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ABSTRACT 

The existence and uniqueness of monosplines satisfying ccrtain boundary 
conditions with a maximal prescribed number of zeros is established. This 
result is of value in characterizing optimal quadrature formulas and in 
problems of best approximations involving free knots, 

O. Introduction 

A polynomial  spline s(x) of  degree n - 1 with r knots {~i}~ ( -  oo < 41 < ~2 

< -.. < ~, < oo) is a function of continuity class C"-2( - oo, + oo) such that 

s(x) reduces to a polynomial  of  degree n - 1 in each of  the intervals ( -  oo,r , 

[~1,~2),. . . ,[~,,oo). This concept was first formalized by Schoenberg [12] in 

1946. In 1958 Schoenberg 1-16] introduced the notion of  a monospline of  degree n 

with k knots formed by adding the monomial  x" to a spline function of  degree 

n -  1 with r knots. 

Monosplines arise naturally in characterizing optimal quadrature formulas for 

certain functions, see [13], [14] and [4]. Schoenberg [16] announced a version 

of the fundamental theorem of  algebra for monosplines. This roughly asserts that 

every monospline of  degree n with k knots admits at most  n + 2r zeros and 

conversely, given - oo < tl < t2 < "'" < t,+2r < oo obeying the restriction that 
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no ti has multiplicity exceeding n + 1, then there exists a unique monospline of 

the requisite type whose zero set coincides with {tl}] +2". Schoenberg proposed a 

proof using moment methods which appears to work only for some special cases. 

Karlin and Schumaker [8] provided a complete proof based on perturbations 

arguments, facts pertaining to totally positive transformations and the study of 

certain determinants. The fundamental theorem of algebra for monosplines serves 

a variety of applications including the problem of characterizing best approxima- 

tions to certain function in the sup norm (see Johnson [3], Schumaker t17] and 

Fitzgerald and Schumaker [1]). 

Motivated by work of Schoenberg [12] on characterizing optimal quadrature 

formulas ("optimality" as distinguished from "best in the sense of Sard" allows 

the knots in addition to the coefficients of the quadrature expression to be regarded 

as free variables) the first author was led to the problem of investigating the 

validity of the fundamental theorem of algebra for monosplines vanishing at 

prescribed points and also obeying suitable boundary constraints. The results were 

announced in Karlin [5]. The present collaboration elaborates the complete 

proofs of these results embracing a number of simplifications of the original 

arguments of the first author. 

Before we proceed further it is useful to fix some notation and terminology. 

Let A -- II A,, I[ then define 

A = 
\ j ~ ,  . . . , j~ 

Ai J l '  ""Ai.j,, 

A is said to be sign consistent of order p (abbreviated SCp) provided all p x p 

subdeterminants of A maintain a single sign; i.e., there exists ep = _+ 1 such that 

epA \Jl ," ' ,Jp > O, 

for all i's and j's, il < "" < ip, Jl < "'" < Jp. 

Monosplines of order n with r knots {~i}~La, 4z < "" < ~, in (0,1) admit the 

explicit representation 

I1--1 

M(x)  = x" + ~, , ,x '  + ~, c,(x - ~,)~- '  
(0.1) ~=o ~=1 

( x + = x "  f o r x > 0  and 0 otherwise). 



Vol. 11, 1972 MONOSPLINES WITH BOUNDARY CONDITIONS 407 

We will be interested in monosplines satisfying boundary conditions of the form 

n--1 

~Ck: ~, A~uM~(O) = O, v = 1 , 2 , ' " ,  k 
(0.2) ~ =o 

,-1 
g~t: ~, BauM~U)(1) = O, 2 = 1 ,2 , . . . ,  l 

i t = 0  

where the matrices A and B obey Postulate ! below. The collection of all such 

monosplines will be denoted by ~r ,(dk O &t). 

We stipulate to prevail throughout the sequel. 

POSTULATE I. 

(i) O < k , l < n .  

(ii) The  k x n matr i x  .~ = I[ A ~ ( -  1) ~[] is sign consistent o f  order k (SCk) 

and has rank  k. The  l x n ma t r i x  B = II II is sc, and of  rank  I. 

Postulate I has wide scope. In fact, the usual types of boundary constraints 

occuring in the study of vibrating systems of coupled particles obey Postulate I 

(see Neumark [11], Gantmacher and Krein [2] and Karlin [7, Chap. 10]. 

Subject to a further meshing requirement on the boundary conditions (which is 

decribed later), we will establish the fundamental theorem of algebra for mono- 

splines of class ~ ' , , , (dk n Ms). The precise statement is as follows. 

THEOREM 0.1: I f  M is in J / / l , , ( dk  C3~l) then M has at most  n + 2 r - k - l  

zeros in (0, 1). Conversely,  i f  n + 2r - k - l points 0 < t 1 < t 2 < ... < t,+2r_k_" 

< 1 are prescribed obeying the restriction that no t~ exhibi ts  mul t ip l ic i t y  

exceeding n + 1, then there exists  a unique monospl ine M in .~,,,(~r nMt) 

whose zeros are exact ly  the set o f  points {t,}~ +2'-k-I. 

The result also holds for Tchebycheffian monosplines but we will confine the 

exposition to the case of polynomial monosplines. The extension is by now 

standard (e.g., see Karlin and Studden [9]). 

Some general comments on the proof which is somewhat intricate. The method 

of Karlin and Schumaker [8] needs refinement and modification to take account 

of the imposed boundary conditions. We employ a continuity method which 

decisively relies on the implicit function theorem. The result on the fundamental 

theorem of algebra for monosplines of [8] serves as the starting point of the 

continuity method. 

The proof divides into two main parts. The first part deals with the case when 

l = 0; that is, no boundary conditions are imposed at the point 1. The result 



408 S. KARLIN AND C. MICCHELLI Israel J. Math., 

from this step serves as the point of departure of an induction on the form of the 

boundary conditions at 1. Several interesting ancillary results emerge from our 

analysis. 

We close this introductory section by indicating the organization of the paper. 

Section 1 reviews several basic properties of the fundamental spline kernel. 

Preliminary aspects of  Rolle's theorem and interpretation of the notion of  multi- 

plicity of a zero for spline polynomials are recorded here. 

Bounds on the number of zeros and their consequences is the main topic of  

Section 2. Relations locating the knots relative to the zeros for monosplines with 

a maximum number of zeros are also developed. 

Section 3 is devoted to deducing a-priori bounds on the coefficients of  a mo- 

nospline having a full set of zeros. 

The fundamental theorem of  algebra for monosplines with one-sided boundary 

condition is established in Section 5. The proof of the general assertion of 

Theorem 0.1 is the content of Section 6. Some applications and extensions are no- 

ted in Section 7. 

1. Preliminaries 

Fundamental to the study of interpolation and approximation by splines on the 

interval [0, 1] and the development of  Theorem 0.1 is the kernel function K(z, w) 

defined on Z x W, where Z and W are respectively the specific ordered sets 

(consisting of a set of  integers and points of an open interval) 

Z --- {x,O, 1,.- . ,n - 1; x~(O, 1)} 

and 

W = {0, 1,2, . . . ,n  - 1, 4; ~ E(O, 1)}. 

K(z, w) is defined explicity as follows: 

K(x, i) = ui(x) = x i, 

I , ; ( x ,  4 )  = ( x  - 

(1.1) 
d ,  D1 -. DJ_~D), K(j,~) = OJxgg(x,~)[x=l(~(x,~) = (x - ~)~b -1 ,  O = 

I , ; ( j ,  i )  = = 

Note that in the domain Z the integers are arranged to follow the x values, while 

in W they are placed prior to the ~ values. The kernel K(z, w) has total positivity 
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properties important for the proof of Theorem 0.1. For other applications to the 

theory of interpolation of arbitrary data by splines with prescribed knots we 

direct the reader to [6]. For ready reference we record the result of Theorem 1.1 

below. The proof can be found in [6]. Let 

0 < x l  < x 2  < "" < x i <  1 

0 < r  < ~ 2 =  < . . .  < ~ < 1  

0 < i  1 < i 2 <  --. < i , < n -  1 

0=<_j l  < J 2  < ' ' "  < J o ~  m - -  1 

be arbitrary apart from the restrictions 2 + p = a + z; 

(~) no more than n consecutive x's or r coincide; and 

(/~) at most n + 1 of the x's and ~'s are equal to a common value. Define 

K (  x t ' ' ' ' ' x l '  j ' ' ' ' ' ' j v  ) 

\ i l , '" , i~,  ~1,r  

u ~ ( x ~ )  . . .  u,o(x~) (x~ - r  . . .  ( x l  - ~ , ) ~ - 1  

u , ( x ~ )  . . .  u , , (x~)  ( x z  - ~1 )+  - ~  . . .  (x~  - r 

ui,U')(1)" "" uU'u ~ u~&)l(  1 - r  . . . .  u , )  r ,  �9 " . -  l ~  - 3 , )  

u(jP)t'Ih . (JP)/1"~ 
is ~ t )  "'" Uia k t )  

,,(ia~ (1 _ ~1) . . . .  (.iv) 11 
- ~ - i ~ -  - Cr) ~-- Ik i 

When several of the x's and/or  r coalesce we invoke the usual convention of 

replacing rows and/or  columns by consecutive derivatives. The following is 

Theorem 1' of [6]. 

LEMMA 1.1. The kernel K(x,~) is totally positive, i.e. 

(1.2) K (  x l ' ' ' ' ' xx '  j l ' ' ' ' ' jp  )>=0 
\ i l , ' " , i , ,  ~l ,~z," ' ,~,  

subject to (~) and (13) (when n consecutive x's (r agree, the n - lth derivative 

in (1.2) is taken as a right (left) derivative). 
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Moreover strict inequality occurs in (1.2) iff when 

(a) o" > )` then 

i~, <Ja+u, 
(1.3) 

Xv ~ ~n-a+w 

prevails, and when 

(b) o- < )` then 

(1.4) 

p = 1,2, . . . ,~  -- ), 

v = 1 ,2 , . . . , 2  

Israe J. Math., 

xv < ~,-~+v, v = 1, " ' ,  2 

~ u <  Xo+, , ~t = 1 ,2 , . . . , ) `  - tr 

holds with two added exceptions. 

I f  z > n and ~ + 1  = ~v+2 . . . . .  ~v+nfor some v with v + n < z, then (1.2) is 

also positive where ~+1 = x~+~. I f ) ,  >= n and xu+ 1 = x~+ 2 . . . . .  x~+,for some 

# with # + n < 2, then (1.2) is also strictly positive if  x~+, = ~+n-~. 

Some fur ther  no ta t ion  and  te rminology  is now appended.  Let  S-(a~,. . . ,am) 

denote  the n u m b e r  o f  sign changes in the sequence a l , . . - ,  am where zero te rms are 

discarded.  Also we denote  by S+(al, .. ., am) the m a x i m u m  number  o f  sign changes 

achieved in the vector  (a 1, ..., am) by allowing each zero to  be replaced by ___ 1. 

We  will need the e lementary  fact 

(1.5) S+(al,a2,. . . ,am) + S+(al , (  - 1)a2, . . . , ( -  1)'~-lam) > m - 1 

The fol lowing l emma will be useful.  

LEMMA 1.2. Let f ~ C ( " ) [ 0 , 6 ] ,  6 > 0  and suppose f ( " ) ( 0 ) # 0 ,  then there 

exists eo > 0 such that for 0 < e < e o 

S + ( f (0) ,  - f ( 0 ) ,  ..., ( - 1)"f (") (0)) = S -  ( f (e) ,  - f ' ( e ) ,  ..., ( - 1)"f(")(e)), 

f(~ ~ 0, i = O, 1,..., n and sign f(")(0) = signf(")(e). 

The  p r o o f  involves a s imple induct ion on  n. 

Let  us now make  precise the no t ion  of  a mult iple  zero o f  a monosp l ine  M in 

Jl,,,(~Ck n ~ z ) .  Since M is globally o f  class C"-2(  - o% + oo) a zero o f  o rder  

t __< n - 2 has the usual in te rpre ta t ion  

M(z) . . . . .  M (t-  ~)(z) = 0 and  M(~ ~ O. 

Moreove r ,  the multiplicity of  a zero o f  any  order  is unambiguous ly  defined 

p rov ided  z is distinct f r o m  a knot .  In  the case when ~ is a kno t  o f  M and 
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M ( O  . . . . .  = 0 

then we adopt the following convention. Set A = M C"-1) ( 4 - ) =  lira M("-l)(p),  
pTr 

B = M ~"- 1)(~+) = lira M("-l~(p), then ~ is said to have a zero of  order 

(i) n - l ,  i f A ' B > O  

(ii) n, if A . B < O 

(iii) a )n ,  i f A ' B = 0  a n d B - A > 0  

b) n + l ,  i f A ' B = O  and B -  A < 0. 

We denote by Z(f;  (0, 1)) the number of  zeros o f f  on (0,1) where a zero is counted 

with its multiplicity. (Z(f;  I) will likewise represent the number of  zeros on I.) 

Rolle's theorem in its simplest form does not yield useful bounds for Z(M; (0,1)) 

when M ~ J/,,,(.~ck n ~Y~). The following classical extension of Rolle's theorem 

will serve in our analysis. 

LEMMA 1.3. Suppose f e  C(")[0,1] and f ,  f ' ,  .-.,f(") have a finite number of 

zeros in [0,1] then 

Z ( f ;  (0,1)) < n + Z(f~'~ (0,1)) 

- S + ( f ( O ) , - f ' ( O ) , . . . , ( -  1)"ft")(O)) 

- S+( f ( l ) f , . . . , f~") ( l ) )  

provided f~")(0)f~")(1) # 0. 

For the case wh en f i s  a polynomial of  exact degree n, where S + is replaced by 

S -  ; this result is attributed to Fourier and Budan.A proof  can be found in [-7, 

Chapter 6]. For completeness, we sketch the main steps. An easy induction on n 

establishes. 

Z ( f ;  (e, 1 - ~)) < n + Z(f("); (e, 1 - e ) 

- -  S - ( f ( e ) ,  - f ' ( e ) , . . . ,  ( - 1)"f~")(e)) 

- S - ( f ( f  - e), f ' (1  - a),..-,f(")(1 - e)) 

provided I-I~'=0J(~ Appeal to Lemma 1.2 and letting e~,0 

produces the desired result. 

2. Bounds on Z ( M ;  (0, 1)) 
This section is devoted to developing bounds on the number of  zeros of  the 

monospline M of type d//~,,(d k n ~ ) .  A series of  consequences including in- 

formation relating the location of  the zeros relative to the knots will also be 

pisclosed. 
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The next proposition of independent interest also has utility in the general 

analysis of securing bounds on Z ( M ; ( 0 , 1 ) ) .  

PROPOSITION 2.1. Let  M be a monospline of  degree n 

n - 1  

M ( x )  = x ~ + Z + Z c,(x - 
,=0  i=1 

0 < ~  1 < ~ <  ... < ~ , <  1 

then 

Z ( M ;  (0,1)) <= n + 2r - S+(M(O), - M ' ( O ) , . . . , ( -  1)nM(~)(O)) 

- S + ( M ( 1 ) , M ' ( 1 ) ,  . . . , / ( ' ) ( 1 ) ) .  

Equal i t y  holds i f f  for  i, we have 

S+(M(~,+ ), - M ' ( ~ , + ) , - . . , ( -  1) 'M(')(r  

+ S+(M(r - ), M ' ( ~ i -  ), . . . ,M(')(~i  - ))) = n + r i -  2, 

i = 1, . . . , r .  

where r i is the mul t ip l ic i t y  o f  the zero o f  M at ~i. 

PROOF. Repeated application of  Lemma 1.3 yields 

Z ( M ; ( O , ~ I )  ) =< n - S+(M(O),... ,( - 1)~M(')(O)) 

- -  S * ( M ( ~ ; ) , . . . , M ( " ) ( ~ i ) )  

Z(M;(~I,~:))=< n - S+(M(~+) , . . . , (  - 1)'M(')(~+)) 

- S+(M(~; ) , . . . ,M(" ) ( r  

Adding 

Z ( M ; ( ~ , , 1 ) )  <= n - S+(M(r - 1)nM(')(r 

- S + ( i ( 1 ) , . . . , i ( n ) ( 1 ) ) .  

these inequalities with due account of  the possible zeros at the knots 

produces the bound 

Z ( M ; ( O , 1 ) ) <  n + 2r - W ( M ,  ~ )  - S+ (M(0 ) , ( -  1)M'(0), ..., ( -  1)'M(')(O)) 
i=1 

- S+(M(1),  M'(1) , . . . ,  M(n)(1)) 

where W ( M ,  ~ )  is an abbreviation of the quantity 
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s - ..., ( -  

+ S + ( M ( ~ ? ) , M ' ( ~ ? ) , . . . , M ( " ) ( ~ , ) )  + 2 - n - r, 

and ri denotes the multiplicity of the zero at ~i. The proof will be completed by 

validating the inequalities W ( M ,  ~i) > O. This is accomplished by examination of 

several cases. 

(i) O<ri<n-2= = 

W(M,~i )  > 2r, + S+(M(r')(~-), ' . . ,M(")(r 

+ S+(( - 1)r 'M(")(~+),. . . ,(-  I)(")M(")(~+)) + 2 - n - r i 

> 2 - n + r~ + S+(M('I)(~), . . . , ( -  1)"-2M("-z)(~i) ) 

+ S+(M(")(~I), . . . ,  M("-z)(~i) ) 

> 2 - n + r t + n - r i - 2 = O  

where the last inequality emerges by virtue of (1.5). 

(ii) r, = n - 1 

W ( M ,  ~,) = 1 + S+(M ("- 1)(~-), 1) + S+( - M ("- 1)(~-), 1) = 2. 

(iii) r i = n and M("-a) (~[)M("- I ) (~  { )  < O. 

(It is convenient at this point to refer back to the definition of multiplicity of a 

zero at a knot, see Section 1). 

W ( M ,  ~,) = S +(M (n- 1)(~-), 1) + S+ (--  M ("- 1)(~+), 1) :> O. 

(iv) ri = n, M("-~)(r +) = 0, M("-x)(r -) < M(n-I'(r 

It follows that W ( M ,  ~i) = 2 

(v) ri = n + 1 implies W ( M ,  ~ )  = 0 

The proof of Proposition 2.1 is hereby complete. [[ 

For M to satisfy the boundary conditions ~r and/or  ~ entails certain sign 

change properties. The next lemma connects these notions. 

LEMMA 2.1. I f  Z=llh. ll is a k x n  SCk m a t r i x ( k < n )  o f  rank k then 

Ae  = 0 for  a vector e requires S+(e)>= k. 

The proof involves a direct application of Theorem 2.2 of [7, Chap. 5]. 

Proposition 2.1 can be combined with Lemma 2.1 to yield the desired bound on 

Z(M; (0,1)). 
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PROPOSITION 2.2. Let M e Jtn., (dk  n ~ )  then 

Z(M; (0,1)) < n + 2 r -  l -  k. 

Careful scrutiny of the proof  of Proposition 2.1 reveals that when W(M, ~i) = 0 

either 

M(n-')(~/-) > O, M(n-1)(r +) < 0 

or  M has a zero of  order n + 1 at ~ and then 

M(n-i~(r -) - M("- 1'(r < 0. 

Stating formally this fact, we have 

PROPOSmON 2.3. Let M be a monospIine of degree n with r knots interior to 
[0, 1"], viz 

n - 1  

M ( x ) = x  ~ + Z 2ix i +  ~ ci(x ~-1 - �9 

i=O i = l  

f f  

then 

ff 

Z(M; (0,1)) = n + 2r - S+(M(O),-  M'(O) , . . . , ( -  1)~Mr 

- S+(M(1), M'(1), ..., MC")(1)) 

then 

(2.1) 

c i < 0 ,  i = 1 ,2 , . . . , r .  

The next proposition concerns bounds on zeros of  derivatives M(~(x) of M(x). 

PROPOSmON 2.4. Let 

n - 1  

M ( x ) = x  ~ + Z 2~x ~+ ~ c i (x -~ l )~  -~ 
i = 0  i = 1  

0 < ~ i  < . . .  < r  1. 

Z(M; (0, 1)) = n + 2r - S+(M(0), - M' (0) , . . . , (  - 1)"M(n)(0) 

- S+(M(1), M'(1), . . . ,  M(")(1)) 

Moreover, 

Z(M'; (0, 1)) = n - 1 + 2r - S + ( M ' ( O ) , . . . ,  ( -  1)n- 1M(n}(0)) 

- S+(M'(1))...,MCn)(1)). 
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Z(M("-I);  ( -  0% + oo)) = 2r + 1. 

PROOF. Note with the aid of  Lemma 1.2 we may assume without restricting 

generality that M(~176 0, i = 0,1, ..-, n. Subject to the zero convention 

set forth in Section 1, it is straightforward to strengthen the conclusion of Rolle's 

theorem asserting specifically that 

Z(M; (0,1)) + S-(M(0),  - M'(0)) + S- (M(1) ,M' (1 ) )  

< Z ( M ' ; ( 0 , 1 ) ) +  1. 

This inequality in conjunction with the hypothesis implies 

Z(M';  (0,1)) __> n - 1 + 2r - S-(M(0) ,- . . ,  ( -  1)"M(")(0)) - S-(M(1) , . . . ,  Me")(1)) 

+ S-(M(0) ,  - M'(0)) + S- (M(1) ,M' (1 ) )  

= n - 1 + 2r - S - ( M ' ( O ) , . . . , ( -  1)"-IM(")(0)) 

- S - ( M ' ( 1 ) , . . . ,  M(")(1)). 

Proposition 2.1 applied to M '  combined with the inequality just proved confirms 

relation (2.1). Repeated application now gives 

Z(M(,-  1); (0,1)) = 2r + 1 - S - ( -  M ("- 1)(0), 1) 

- S - ( M ( , -  1)(1), 1). 

Since 

it is easy to check that 

then 
(i) 

PROPOSITION 2.5. 

i x  + x _-< 0 M(n-1)(x) 
x + ~  x > l  

Z(M("-I);  ( -  0%0]) = S - ( -  M("-I)(0),I)  

Z(M("-I);  [ 1 , ~ ) )  = S-(M("-I)(1) , I) .  

Suppose m e .//1,,, ( d  k t'3 g~t) and 

Z(M;  (0,1)) = n + 2r - k - l 

S+(M(O), ..., ( -  1)"- 1M("- 1)(0)) = S+(M(O), ..., ( -  1)"M(")(0)) = k 

(ii) S+(M(1), ..., M ("- 1)(1)) = S+(M(a), ..., M(")(1)) = l 

(iii) Z(Mr [0,1]) = 2r + 1. 

Proof. By Lemma 2.1 

(2.2) 
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S+ (M(O), ..., ( -  1)"- ~ M ( ' -  x)(0)) >- k 

S+(M(I) ,  ..., M ( ' -  ~)(1)) _= l 

and so 

k + l < S+(M(0), ..., ( -  1)"M(")(0)) + S+(M(1), ..., M(")(1)). 

Comparing these inequalities with the conclusion of  Proposition 2.1 we see that 

statements (i) and (ii) are correct. It follows that 

M(n-~)(1) -> 0, M("-x)(0) ~ 0. 

Hence, from Proposition 2.4, we infer that 

Z(M("-I ' ;  [0,1]) = 2r + 1. II 
Consider boundary conditions of  the form 

(2.3) 

M(~")(0) = 0, # = 1,..., k 

M(Jv)(1) = 0, v = 1,..., l 

O <  il < "'" < ik < n  - -1 ,  O < j l  < "'" < j l  < n - -  1. 

As a consequence of  (2.2) we deduce 

PROPOSITION 2.6. Let  M be a monospl ine o f  degree n with r knots in (0, 1) 

n--1 

M ( x )  x" + . ~  2,x' + ~ c~(x , -1  = - 4 , ) +  �9 
i = 0  t = 1  

I f  Z ( M ;  (0,1)) = n + 2r - k - l and M satisfies (2.3), then 

(a) ( -  1)VM(~ > 0, ik_  v < i < ik_,+l, Y = 0, 1, "" ,k  

(b) ( -  l f ( -  1)JMO)(0) > 0, j , _ ,  < j < j~_~ + 1, v = O, 1 , ' " ,  l 

(where io =Jo  = - 1, ik+l =Jz+t = n) . 

We continue in the next proposition by locating the zeros relative to the knots 

when the monospline at hand exhibits a full set of  real zeros. Set 

p = S+(M(O), . . . ,  ( -  1)"M(")(0)) 

q = S+(M(1),. . . ,  M(')(1)). 

PROPOSITION 2.7. Let  M be a monospl ine o f  the f o r m  

rl--1 

M ( x )  x" + E 2ix i + ci(x . - i  = - r  , 0 < ~ t  < . . .  < ~ , < 1 .  
i = 0  i = 1  
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I f  n + 2r -- p -- q distinct points exist satisfying 

M(h) = 0, i = l , . . . , n + 2 r - p - q  

0 < t 1 < -.. < t n+2 r_ p_  q < 1 

then setting ~*= Ct(i+ 1)/2], i = 1,... ,  2r, denotes thegreatest integer <=z 

we have 

(2.4) t, < ~p+~ 

(2.5) 4" < t._~+, 

whenever the indices make sense and n > 1. 

PROOF OF (2.4). Suppose to the contrary that * ~p+v --< tv for some v. Then 

~ ( x )  = x" + E 1ix' + ci(x - ~3"+ -~ 
i=0 [(p+v)/2]+ 1 

coincides with M on [~p+~, 1] for suitable ~.~. According to Proposition 2.1 

[ ~ , , ~ , l ) ) < n + 2  r -  - q .  

But, manifestly 

Z ( ~ ;  [~*+, ,1) ) -  Z(M; * [~p+,, 1)) > n + 2r - p - q - (v - 1) 

yielding 2[(p + v)/2] < p + v - 1, an absurdity. The relations (2.5) are proved 

analogously. 

R E M ~ .  In the case n = 1 it can be checked that 

~ i= t2 i -p  ( 2 i > p ) .  

Furthermore, provided M is continuous, Proposition 2.7 persists even when the 

t~'s are multiple zeros. 

This section is concluded by adding a postulate pertaining to the meshing of 

the boundary conditions at points 0 and 1. The stipulations at the end points and 

the number of knots cannot be prescribed completely independently and be 

concordant with Theorem 0.1. 

POSTULATE II 

(i) Postulate I 

(ii) I f  1 > 2r then there exists indices 

O < = i 1 < . . . < i k  <=n--1, O<=jl < . . . < j t < = n - - I  
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satisfying 
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1, . . . ,k)  
A ~ O, 

\il,...,ik: 

Israel J. Math., 

1,...,I 
B \Jl,"',J~ ) ~ 0 

and 

(2.6) jj, =< tx+j,," g = 1,.. . ,  1 - 2r, ~, = n + 2r - k - I 

where {if,...,if_k} denote the complementary indices of {q,...,ik} in the set 
{0,1, . . . ,n- 1). 

The relevance of Postulate II will be realized in the general analysis of Theorem 

0.1. For  the moment we highlight its utility. Construct the mapping of  Euclidean 

n + 2r space into itself as follows 

where for each 

(~: E n+ 2r .-~ E n+ 2r, 

u = (2o,21, '" ,2 ,_  1, ~1, cl,"',~,, c,) eE"+2~ 

we determine the monospline 

n--1 

M(x) = x" + Z 
i = O  

Given 0 < tl < "" < t.+2.-k-~ < 1 form 

;Lix i + ~ ci(x ,-1 - r  �9 

i f l  

. n - - I  

]~ A. MtJ)(O~ tJ x~ /  
j = O  

(r = M(fi_k) 
n - - I  

~, Bi-n-2r+t,jMU)(1), 
= 0  

Let J(u) denote the Jacobian of  r at u. Then, reliance on Laplace's expansion 

and the Cauchy Binet formula (see [6] for details) produces the result 

J(u) = (il'~l c,)(-l) k((k-1)/2) 
= O~fl<12<=.,.<lk<=n--1 

O<=jl<j2...<jt<_-n-I 

(2.7) 

l<_i<_k 

k < i < = n + 2 r - l  

n+ 2 r - l  <i <=n+ 2r 

x.~(il,iE,...,ik) ( i ," ' , l  ) ) 

where X,v = A , v ( - I f  and {i'l,i~,'",i'_k} are the complementary indices of 

{it, ..., ik} in {0,1, ..., n - 1}. (Pertaining to the notation and meaning of K(: : :), 



Vol. 11, 1972 MONOSPLINES WITH BOUNDARY CONDITIONS 419 

see Section 1.) This calculation in view of  Lemma 1.1, Propositions 2,3 and 2.4 

implies that if the boundary conditions d k  n ~ t  fulfill the requirements of  

Postulate II then 

(2.8) ~(u)  = 0 entails J(u) ~ O. 

This fact provides a vital ingredient in the ensuing analysis. 

3. Bounds on the coefficients of monosplines 

In Section 2 we determined the upper bound n + 2r - k - I on the number 

of zeros of  a monospline M ~ J g , , , ( d  k n ~l)- Several properties of monosplines 

with a maximum number of  zeros were listed in Propositions 2.3-2.7. Our objec- 

tive in this section will be to provide a-priori estimates on the coefficients of  such 

a monospline where d k c3~  l obeys Postulate II. It is proved in Karlin and 

Schumaker [8] that if 

n - 1  

M ( x ) = x "  + ~,2ix i+  ~ e t (x-~i)+ -1 
i=O i = l  

has n + 2r zeros in some bounded interval I then ~-i and e~ are uniformly bounded 

independent of the location of the zeros in I. Can this result be extended to the 

circumstance of  M e ~t'n.,(~ k r3 ~g) exhibiting a maximum number of  zeros in 

I = (0,1) and where ,~r r ~ l  obey Postulate II? The next example indicates that 

we cannot expect such a result without appending some further constraints. 

Example. 

r = O , n = 3 ,  k = l , l = l .  

M(x) = x 3 - ( o ~ + 6 )  x + e , e > O  

�9 ~r : M"(O)=O 

~1 : (6]5)M(1) + M"(I) = 0. 

Here, d x c~g~ t satisfies Postulate II (it = 2, Jl = 0). According to Proposition 

2.1, M can have at most one zero in (0, 1). Since M(0)M(1) = - 5~ < 0, M, in 

fact, exhibits a zero in (0,1), but the coefficients of M are not uniformly bounded. 

Note that the zero of  M in (0, 1) tends to the boundary point 1 as ~ ~ + oo. 

This is the nub of  the difficulty. We will prove that boundedness of the coefficients 

is maintained provided the zeros are kept away from the end points of [0,1]. 

Boundedness of certain coefficients holds with no restrictions on the location of  

zeros of  M in (0,1). This is the principal content of  Propositions 3.1 and 3.2 
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PROPOSITION 3.1. Suppose ~r n ~ sat isfies Pos tu la te I. Let M ~ d g , , , ( d  k ng~)  

"-~ ~: 
M(x) = x" + ]~ 2ix ~ + ci(x _ ~),~1 

i = 0  i = 1  

and Z(M;  (0,1)) = n + 2r - k -  I. Then 

12.-,1_-< n, Ic, I _-< n, i = l , . . . , r .  

PROOF. According to Proposition 2.5, we have 

Z(M("-I); [ 0 ,1 ] )=  2r + 1 
and 

M ( " - l ) ( x ) = n ! x + ( n - 1 ) ! 2 , _  1 + ~ ( n - 1 ) ! c i ( x - ~ i ) ~  
i = I  

Consider for simplicity the case where M ("-1) displays only distinct zeros 

tl < "" < t2,+1 (the case of multiple zeros works similarly but requires more 

tedious examination of cases). The remark following Proposition 2.7 tells us that 

r must be equal to t2i. Hence 

n ! t~ + (n - 1) ! 2._ 1 = 0 

t z i + l n !  + (n  --  1) !  2 n _  1 + ( n  - -  1)! 

so that 

i 

Z c . = O  
~ = 1  

c , =  n [ t 2 , _ 1  - t 2 , + 1 ] .  2. -1  = - n h  "1[ 

The previous proposition established that the coefficients 2,_, ,  q , . . . , e r  are 

bounded independent of the elements comprising the boundary forms as long as 

Postulate I is satisfied. A parallel result relevant for all the coefficients holds 

provided 2r >= 1 (or 2r ____ k) that is, where there are sufficiently many knots 

compared to the number of boundary conditions at 1 (or 0). More specifically: 

PROPOSITION 3.2. Let ~r (3 ~1 satisfy Postulate I. Suppose 2r > 1. Then there 

exists a constant K such that i f  

M ( x )  = x" + 

belongs to ./g,.r(dk n ~ )  then 

12,{_-<K, 
Ic, 

n--1 r 

E 2ixi+ E ci(x-~i)~ -1 
i=O i = 1  

i = 0 , . . . ,n  - 1 

i = l , . . . , r .  
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The  bound K depends on n , r , k , l  but not on the elements of  the matrices II 
and II B. ll. 

PROOF. The use of Rolle's theorem coupled with induction (cf. Lemma 1.3) 

shows that 

Z(M(J); [0,1]) ~ Z ( M ;  (0,1)) - j + v j, j = O, 1, . . . ,  n - 1 

vj - S+(M(0), ..., ( - 1)JM(J)(O)). 

But (see Proposition (2.5)) 

S+(M(O), ..., ( - 1)"- 'M ( '-  1)(0)) 

vj + S+(M(J)(0), ..., ( - 1)"- IM("-(0)) 

v j + n - j -  1. 

Z(M(J); [0,1]) >__ (n + 2 r -  k -  l ) - j  + ( k -  n + j  + 1) = 2 r -  1 + 1 > 1. 

Thus 

(3.1) Z(M(J); [0, 1]) > 1, j = 0,1,-. . ,  n - 1. 

Bounds on 2,-2, 2 , -3 , ' " ,2o  are established inductively by using the conclusion 

of Proposition 3.1, coupled with the information of (3.1). 

A parallel proof  works if 2r >__ k by transforming the variable x to 1 - x. 1[ 

When 2r < l we have seen in Example 1 that boundedness does not necessarily 

prevail. However the following fact will serve our needs. 

PROPOSITION 3.3. Let  IIA.v[I, IlB vlL induce boundary conditions ful f i l l ing 

Postulate I L  Suppose 2r < I. Given 6 > O, there exists a constant D (depending 

on 6, 11Auvll' II B~vlI) such that for  

n--1  

M(x)  = x" + ~, 21xi + ~, c i (x-~i)"+ -1 
i = 0  i = 1  

in J/l,,r(~'k ~ )  sat is fying M(ti)  = O, i = 1, . . . ,n  + 2r - k - l with 

then it follows that 

6 < t I < ... < t n + 2 r _ k _  l < 1 - -  (~ 

[2i[ < D ,  i = 0 , 1 , . . . , n -  1 

Ic, l < D ,  i = 1,2, . . - , r  
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PROOF. Define 
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Y(x)= x" + ~ ci(x-~,)~-1 
i = 1  

Israel J. Math., 

n + 2 , - I  

P ( x )  = Z 2ix  
i = 0  

with 2 i specified equal to 0 for i=> n. Of course, M ( x ) = P ( x ) +  Y (x ) .  If  

M ~./ , ( , . , (d k n ~s), then Proposition 3.1 assures the existence of  a constant 

/~' such that 

(3.2) max IY(~ < .1(, i=O, 1, . . . ,n-2 
0__<x~l 

n - I  

n--1  

(3.4) 

Set 

a = 1,. . . , l .  

n - 1  

H~, = ~, Au,Y(~)(O), i t = l , - - . , k  

n--1  

L~ = Z B~Y(~)(1), it = 1,. . . , l .  
v = O  

Abbreviate n + 2r = N. Since M e ,//n,r(dk C3 &1) we have 

(3.5) 

n - 1  

E A,.P('(o) = - H., 
v = O  

P(t i )  = - Y( t , ) ,  

n- - I  

B~vptv)(1) = - L,,  
v = 0  

It is convenient to introduce the quantities 

i t =  1 , . . . , k  

i = 1 , . . . , N -  k -  I 

it = 1, . . . ,  I. 

()[ = I t = l , . . . , l , v = O ,  1 , . . . , N - 1 .  
~=o ~ d x "  -~. =1 

Regard (3.5) as a non-homogeneous system of N linear equations in the variables 

2o, 21, .'., ;tN-1 with determinant given by: 
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Aao, All ,  "", Aa,.-a, O,-.., 0 

A = 

Ako , Akl  , "", A k , . _ l ,  O, " ' ,  0 

t ~ t~, " . ,  t ~ - '  

tO - k - l ,  1 N-  1 t N - k - l ,  "", t N - k - t  

J~lO' J~ll '  " ' "  J~I,N- 1 

/~10, /~/1, " ' ,  ~ l , N -  1 

Let A ~v) be the determinant obtained from A by substituting for the vth column 

the vector of  components 

( -  H 1 ,  . . . ,  - H k ,  --  Y ( t O ,  . . . ,  _ Y ( tN_k_Z)  , --  L1 ,  . . . ,  - L l ) .  

Cramdr's rule gives the formula 

(3.6) 

Set 

A (v) 
v ! 2 ~ -  A " 

For  all 

D(q ," ' , tN-k - t )  = 1-I (fi--  tj). 
i<j 

0 < t 1 < t 2 < "'" < t~_k_  l < 1 

with due account of  (3.2)-(3.5) we deduce the existence of  a constant E inde- 

pendent of  {ti}, such that 

I 
I < E �9 max 

D ( q ,  . . . ,  I N - k - t )  I = 0 ~  I 
I Y ~ ' ~ - k - t - 1 ) ( X ) ] .  
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Since 2r < l and the boundary conditions fulfill the stipulations of  Postulate II 

we are assured of  indices 

0 <  i 1 < ... < ik< n -- 1 

O_-<jl < "'" <Jz < n - 1 

with the properties 

/1 , . . . ,k  ) 

A (ix ...,ik ~ 0  
(3.8) 

(i./) ~ 0  B ...,j, 

and 

j < .t 
= t N _ k _ t + u ,  /2 = 1 , ' " , l .  

Expanding A (compare with 2.7) we find 

(tl ,"' , tN-k-,,  j~,"',j, ) 
(3.9) IAt = ~g  

\i'~,...,i~_k_ ,, i'S_k_t+1,'",i~_ k 

where ~ > 0 is a constant independent of tl < -.. < tN_k_ ~ but depending on the 

non-zero values in (3.8). Let 

K ( t ) = K *  ( t i"" t '  Jl, "',Jl 

\ i l ,  '" ", i~-k / 

then K(t) > 0, 0 < t < 1 by Lemma 1.1. But then it follows as in Chapter 2 of  [-7] 

that 

(tl , '",tN-k-,,  J~,'",j, ) 
(3.10) K > pD(t 1, "" ", tN_k_l) 

\ i'~, "' "" "~ I N - k  

fo r  some absolute constant p > 0 provided 0 < J < t~ and t N - k - t  <= 1 -- t~ < 1. 
Combining the estimates (3.7), (3.9) and (3.10) in (3.6) validates the bounds as 

stated in the Proposition. 

4. Uniqueness 

In this section we establish the uniqueness assertion of  Theorem 0.1. Some 

reductions needed for the task of  the p roof  of  existence in Theorem 0.1 are also 

set forth. 
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In this section we assume n > 3. The cases n = 1 and n = 2 will be treated 

separately in Section 5. 

PROPOSITION 4.1. Let 

I1--1 

M(x)  = x" + ~, bix i + c,(x - {i)"+ -1 
i = 0  i = l  

n - I  
N ( x ) = x "  + Z d~x i +  ~ e , ( x - th )~ .  -1 

i = 0  i = l  

be two monosplines sharing the set of  zeros 0 < tl < t2 <= "'" ~ tn+2r-k - I  < 1 

where no zero exhibits mult ipl ici ty  exceeding n + 1. Suppose M and N belong 

to ./ff, ,r(dk ~ Nl) where boundary conditions ~'~k ~ ~l  are of  the type ful f i l l ing 

Postulate II.  Then 

M - - N .  

PROOF. Form 

n - 1  

(4.1) P = M - N =  E (bi - d,)x ~ + f~ ci(x - ~,)"+-~ - ~. ei(x - rh)"+-~. 
i = 0  i = 1  i = 1  

We restrict consideration to the case that the multiplicity of  any zero among 

{ti}~ +2'-k-l  occuring a t the  knots are each =< n - 1. The discussion for the case 

involving the presence of zeros of  multiplicity ____ n is left to the reader. 

Let ~1, '" ,  ~2, be the sequence {r U {qi} (where ~i is repeated twice if ~i = qi) 

arranged in natural order. Then P is a spline of order n with 2r knots satisfying 

n - I  

~, AiiP(J)(o) = O, 
j = O  

(4.2) P(ti) = O, 

/1--1 

~, BijPO)(1) = 0, 
j = O  

This display involves a set of  n + 2r linear homogeneous equations in the n + 2r 

coefficients of P(x).  We will show that the determinant of this system of equations 

is nonzero. This fact manifestly implies P = 0 the required uniqueness. 

Expanding the determinant of  the system as in (2.7) involves terms of a common 

sign. The non-vanishing of  the determinant is equivalent to ascertaining indices 

il < ... < ik, Jl < "'" < Ji such that 

i = 1, . - . ,k  

i = l , 2 , . . . , n  + 2r - k -  I 

i = 1,...,1. 
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\ i l , " ' , i k  / ~Jl,'",Jl \ i l , " ' , i ' n - k , ( l , ' " , ( 2 ,  / 

Recalling the prescriptions of Postulate II (Section 2), and consulting Lemma 1.1, 

we find that the quantity in (4.3) is non-zero provided 

(4.4) t, < (k+~ 

(4.5) (, < t,-k+~ 

hold (whenever the indices make sense). 

Now Proposition 2.7 informs us that 

tv < ~[(k+v+l)/2] 

~[k+v+ 1)/2] < ln-k+v 

(4.6) 

(4.7) 

and 

(4.8) 

(4.9) 

tv < r/Ek+v+l)!2 ] 

~/[(k+v+ 1)/2] < tn-k+v 

The relations (4.6)-(4.9) assure (4.4) and (4.5). Indeed, from the definition of  the 

sequence we know that 

rain [~t(i+ 1)/21, ~/((~+ 1)/2~] < (i, i = 1, ..., r. 

Thus (4.4) follows from either (4.6) and/or  (4.8). A similar argument emanating 

from (4.7) and (4.9) established (4.5). l] 

REMARK. If  the boundary conditions have the form 

n--1 
A~j(- 1)~M~J)(0) = 0, i = 1,..., k 

j = 0  

n-1 
A~M(J)(1) = 0, i = 1,..., k 

j=O 

and the zero set of  M is invariant under the transformation x --* 1 - x then the 

uniqueness guarantees that the monospline satisfying Theorem 0.1 has the 

symmetry property 

M(x) = - 1)"M(1 - x). 

This functional relationship facilitates the practical computation of  the desired M. 

We conclude this section by proving that the existence part of Theorem 0.1. 

involving zeros of  higher multiplicities is a consequence of  knowing the existence 
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for the case of simple zeros. Suppose Theorem 0.1 is achieved in the case of simple 

zeros. Now let 0 < t~ < t 2 < ... < tn+ 2r-k-  ~ < 1 be prescribed. 
r ~ x ' ~ n + 2 r - k - I  For each integer e > l ,  construct a set of points ~s~(e)~i= ~ by 

"spreading apart"  the multiple zeros. Specifically, if 

t m _  1 < t,, : tin+ 1 = " "  - -  tin+ p < t m + p +  1 

define s,(e)= tm + j e / 2  ~, j = 0 , 1 , ' " , p  where e is determined so that si(e ) are 

distinct and in (0,1); viz 

0 < s l (e  ) < ... < S,+e,_k_z(e ) < 1. 

There exists a monospline M(~) in ~4/ , , , (d  k ~ ~ )  such that 

M(e)(X ) = x n -t- ~ ,~e)xi q- c}e)( x -- hi):(e)an-1)+ 
i = 0  i = 1  

n - 1  
(v) 

A#vM(e)(O) = 0, # = 1,..., k 
v = 0  

(4.10) M(e)(si(e)) = O, i = 1, . . . , n  + 2r - k - l 

n - 1  

B,,M~V)(1) = 0, /~= 1, . . . , l  
v = 0  

Propositions 3.1 and 3.2 affirm that the coefficients o f M  e are uniformly bounded. 

We invoke the standard selection process to achieve a monospline 

M ( x )  = lim Mem(X ). 
~,1~ oo 

The equations (4.10) without difficulty pass into the required relations for M ( x ) .  

5. Existence for one-sided boundary conditions 

It is useful to outline the steps of the analysis. We already know from the dis- 

cussion of Section 4 that it is enough to deal only with the case of simple zeros. 

The special case of n = 1 or 2 is easily handled by explicit construction. When 

n > 3 we proceed by a continuity argument with heavy reliance on the implicit 

function theorem. Existence is first established in the presence of boundary 

conditions imposed only at the endpoint 0 employing an induction on the number 

of knots. The full theorem is proved by using the same continuity method coupled 

with induction on the form of the boundary conditions at 1. 

We examine first the cases n = 1 and n = 2. Recalling the rank condition we 

satisfies 



428 s. KARLIN AND C. MICCHELLI Israel J. Math., 

find that  the only cases no t  encompassed by the fundamenta l  theorem without  

boundary  condi t ions  are the possibilities o f  n = 2, k = l = 1 and n = 2, k = 1, 

/ = 0 .  

Cons ider  n = 2 with k = 1, l = 0. 

Propos i t ion  2.7 demands  

AloM(O ) + A l l M ' ( O  ) = 0 

ti < "'" < t2r+ 1. 

Case 1. 

+ x)  
M ( x )  = x 2 -  t 2 (~ + tl ) ,  x < t 1. 

The determinat ion thereafter is straightforward. 

Case 2. Alo = 0 then M' (0 )  = 0. Thus 

M ( x )  = (x - t l ) (x  + h )  x _-< t 1. 

t l  < ~1 < t2. 

Aio ~ 0 entails M(0)  = ~M'(0)  where a > 0. Thus 

We construct  a Monospl ine  M ( x )  to  vanish at the points  - t 1 < t 1 < t 2 < . . .  

< t2r+l .  

When  n = 2, k = l = 1 we proceed as before using the fact that  

tl < ~l < t2 

t2r -2  < ~r < t2r" 

We may  now stipulate th roughou t  the remainder  o f  the p r o o f  that n __> 3. 

In  this section we prove 

THEOREM 5.1. Let  the k • n ma t r i x  II A,v(- 1; l[ be SCk and o f  rank  k. Let  

0 < t 1 < ""  < tn_k+2r be prescribed. Then  there exists  a unique the points 

monospl ine 

. -1  

M ( x )  = x" + ~, ).i xr + ci(x _ ~)~_-1 
i=0 i = i  

sat is fy ing 

n-1  

~, A,vM(v)(O) = O, # = 1, . . . ,  k 
v=O 

M ( h  ) = 0 i = 1 , . . . , n  - k + 2r. 
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PROOF. The  va l ida t ion  o f  the t h e o r e m  in the case r = 0 (the fo rmula t ion  

reduces then  to a l inear p rob lem) ,  requires  the invers ion o f  a suitable matr ix .  The 

procedure  is s t ra ightforward.  We cont inue  by induct ion  assuming the validity o f  

the t h e o r e m  for  the case o f  r - 1 kno t s  (r  __> 1). Le t  0 < tl < ... < tn_k+2~ be 

given. By the induct ion  hypothes is  there  exists a monosp l ine  M(x)  with r - 1 

knots  satisfying 

n-1 
Z A. ,M r (0) = O, 

v = O  

M(fi) = O. 

We represent  M(x) in the fo rm 

M(x) = x" + 

I f  

then  

/t = 1 , 2 , - . . , k  

i = l , . . . , n - k + 2 r - 2 .  

n-1 r-1 

Z E -1. 
i = 0  i =  

~ Etn-k+2r- 2, tn-k+2r-1)  

M(x ; 4) = M(x)  - M(t"-k+ Z'- 2)(X -- r 
(t .-k+2,-1 - r 

is a monosp l ine  vanishing at the points  {tl,'",tn_k+2r_l}. Moreover ,  since 

M(t.-k+2r-2) > O, M(t.-k+2r; 4) approaches  - ~ as ~ increases to  t._k+2r_ 1. 

I t  fo 110WS that  the re exi st ~ e [ t. _ k + 2 , -  2, t ._ k + 2 . -  1 ) Such that  fo r  M(x)  = M(x; ~) 

the fol lowing relat ions hold :  

n - 1  

(5.1) ]~ A,j~r(J)(0) = 0, i = 1,2, . . . , k  
j = O  

(5.2) )kt(t,) = 0, i = 1, . . - ,  n - k + 2r  - 1 

(5.3) 31(t,_k+2, ) < 0. 

We  k n o w  f r o m  Propos i t ion  2.1 that  3(t vanishes at mos t  n -  k + 2r t imes on  

(0, ~ ) .  In  light o f  (5.3), ~ r  actually admits  a m a x i m u m  n u m b e r  o f  zeros since 

3~t(t) ~ + oo when t ~ oo. There fore  there exists a unique f > t,_k+2, fo r  which 

= 0 .  

On the basis o f  these facts and  with the aid o f  Propos i t ions  2.7 and 2.2, and  

L e m m a  1.1, we infer  tha t  
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(5.4) K* ( tl ' ' ' ' ' tn-k' ' ' ' ' tn-k+2"-I ) > 0  

\ i ' l , ' " , i 'n-k ,  ~X, ~1, " " , ~ , -  1, ~,-  1, ~ 

for  all indices 0 < i~ < ... < ik < n -- 1 and also the relat ions 

(5.5) ci < 0, i = 1, ..., r - 1 

prevail. 

We cont inue  the p r o o f  in the form of  some lemmas in termit tent  with discussion. 

LEMMA 5.1. There exists an e > 0 and a 

n--1 

(5.6) M ( x , z ) = x " +  • 2i(z)x + 
t=0 i=1 

unique f a m i l y  of  monosplines 

c,(~)(x - ~,(~))~- 1 

0 < ~s(Z) < ... < ~r_l(z) < ~,(z) = z < l ful f i l l ing conditions (5.1), (5.2), and (5.3) 

for  each ~ e (~ - e, ~]. 

PROOF. The map �9 o f  E " -*+z ' -  1 into itself (cf. Section 2) defined by 

(20, "",/~n-1, Cl, ~1, C2, ~2, "",Cr ) 

n~l n - 1 
A~jM(J)(o), ..., E 

\ j=o  j=o 
AkjM(J)(O) ,M(t l ) , " ' ,M( tn  k+2, 1) - -) 

has as its Jacobian evaluated with respect to all its variables except z: 

) J(O;) -1 ci = 

A 1 oO!,- . . ,Al, , ,_l(n -- 1)[ 0 0 0 

Ak,oO 1, " " ,Ak , , - l ( n  -- 1)1 0 0 0 

t o t~ ' -~  ( h  , , -1 ~ ( t l  , , -1 
�9 - ~ ) +  ' O~ - r  , ' " , ( q  ~)~--~ 

tO ~n-  1 ( t n - k  + 2 r -  1 n -  1 -- ~l)+ , " " , ( tn -k+2 , - ,  Z)n+ -1 ~ n - k + 2 r - l ~  " " ~  ~ n - k + 2 r -  l~ 
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Expanding J(O) (compare with (2.7)) along the first k rows yields 
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j(@) = ( _  1)k(k- 1)/2 Ci • i jr 
1 O~il<...<ik<n-1 j = l  

X .4 t i l , . . . , ik  \ t l , ' " , in-k ,~i ,~l ," ' ,~r- l ,~r-1 ,  "~ 

where IlLvll = I [ A . v (  - 1)~11 �9 Referring to (5.4) and (5.5) we see that J ( * ) #  0 

when z = ~. Appealing to the implicit function theorem affirms the conclusion 

of  the lemma. The implicit function theorem further tells us that 2i(Q, ci(z) and 

~i(z) are all continuously differentiable functions of  the parameter z. 

Let Go be the infimum of all ~ where Lemma 5.1 is applicable on (~o,~]. We 

will establish that 

(5.7) lira M(x, z) = Mo(x ) 
�9 c l i o  + 

is the monospline which fulfills the requirements of  Theorem 5.1. To this end, 

suppose first that the limit (5.7) exists and all the knots of Mo(x) are in (0, co ). 

Then 

n - 1  

X AfjMtoJ)(o) = O, i = 1,...,  k 
j = O  

Mo(ti) = 0 i = 1 , . . . , n -  k + 2 r -  1 

Mo(t,-k+2,) < O. 

Mo(tn_k+2r ) < 0 then we can invoke Lemma 5.1 to extend the family of  

monosplines below Go contradicting the choice of Go. Thus Mo(t,_k+2,) = O. 

Before tackling the proof  of  (5.7) we need two further Lemmas. 

LEMMA 5,2. Let M(x,z) be the family  of monosplines (5.6) satisfying 
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(5.8) ( n~l A~jM(J)(o, z) = O, 

~l~t l ,  z ) =0, 

i =  1,...,k 

i = l , . . . , n - k + 2 r - 1  

(5.9) 

for T ~ (~o, ~]. Then 

M(t,_k+z~,z) < 0 

d 
(5.10a) --d-~z M( t,_k+:,,z) < 0 

and 

(5.10b) ~dP(..,~,z..____~, > O, i = 1 , 2 , . . . ,  r - 1 
dv 

PROOF. Different iat ing the re la t ions  (5.8) in z (with ~(z) = z) gives 

(5.11) 

n - 1  

0 = ~, A~j d.~. M(J)(O 0,, i = 1, 2,.. . ,  k 
j =o "~ 

= = ( / ~ ! ) 2 u ( z ) ~ .  + '(z)(t, - ~,)%-a 0 -d-~zM(ti,z) ~=o ~=1 

+ Z c,(~)d~ O~ -~')+ ' 
V = I  

i = 1 , 2 , . . . , n  + 2r - k - 1 

(5.12) M(t,z) = ~=o • ( # ! ) 2 ~ ( z ) ~ .  + "'" + v=l cv(t)d~ .~_(tid _ ~)~+_~ 

with t a fixed value > tn+2r_k_ 1. Regard  the first n + 2 r -  1 equat ions  as a 

h o m o g e n e o u s  system in the n + 2r variables  

~(~),"',~-1(~), 

d~l, , d~,_~ c' z ei(~),cl(~) ~ "",e,_l(~),er-d~)---dU, ,(),c,(~). 
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The rank of this matrix is (n + 2r - 1), (cf the analysis of (2.7)). Apart from a 

multiplicative constant the solution in (5.4) is proportional to the minors of the 

matrix obtained by eliminating successive columns and attributing to them the 

proper sign. More exactly, we obtain via the usual expansion (see 2.7) 

( _  1)2,_2Vc~(r ) d ~  
dr 

(5.13) c,(z) 

~-, A , ' " , k  ~ ..- K[tt'l ' ' t2n+2r-k-1 

,,,,~..,,~(H',')~t,, ..., d , . . . . . . .  ) l l ," ' , ln-k,  ~l ,~l ," ' ,~v-l ,r162 1,~v+l,"',r Cr 

i l < i 2 < ' " < i .  " "  ~\il, ..., ik / \ i l  . . . , i n _ k , ~ l , ~ l , . . . , r  r 

As cv(r)c,(z) > 0 (both are negative) we deduce on the basis of  (5.13) that 

d~v 
> 0 ,  v = 1 ,2 , . . . , r  

dr 

and (5.10b) is proved. 

Next append equation (5.12) to (5.11) and regard the known side as the vector 

(0, 0, . . . ,  O,(d ~dr) M(t, r)). Solving for the variable c,(r) d~, ~dr = c,(z) gives 

e,(~) 

dM(t,z) 
~ o 

i l , ' " , i  k i l ," ' , i 'n_k,~l ,~l , '" ,~,_l ,~r_l ,Z 
d~ 

t ) ... ) 
\ i l , ' " , i  k \ i l , ' " , i 'n_k,~l ,~l ," ' , r  , 

We know from Proposition 2.4 that necessarily cr(z ) < 0. Therefore dM(t,z)/dz 

< 0 as claimed in (5.10a). In view of the fact that (5.3) holds for M(t,r) there 

exists a unique t(z) > tn_k+2r such that M(t(T),r) = O. 

COROLLARY 5.2. Let M(x; z) be as defined in Lemma 5.2. As r decreases 

~l(r),~2(r), '" ,  ~r-1(r) strictly decrease and the zero t(r) strictly decreases. 

The final assertion is a direct consequence of (5.10a). 

We return now to the proof of (5.7). We claim that it is enough to prove that 

there exists a constant C > 0 such that 

(5.15) 12i(z)l =< C, i = 0, 1 , " ' ,  n -- 1 

ci(z ) < C,  i = 1,...,  r z c (40, ~]. 
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For  in this case there exists % --* r such that 
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where 

It follows that 

and 

n - 1  

l i m M ( x , % ) = x " +  ]~ 2i x i +  k c i ( x - ~ i ) ~  -1 
/ ~ o o  i = 0  i = 1  

o < *  <...<~ 

lim c~(r~) = ci 

lira 2i(T.) = 2~ 
It-'~ o0 

lim r = ~i 

Mo(t~) = 0, i = 1, . . . ,n  - k + 2r - 1  

lim M(i)(0, 4.) = M(~)(0), 
?l--~ oO 

i = 0 ,1 , - . . ,n  - 2 .  

We wish to show that all the knots of Mo are distinct and are located interior to 

(0, oo). Consider two cases. First, if A,~,_~ = 0, i =  0, 1 , . . . , n -  1 then Mo also 

satisfies 

n - - 1  

~, AoM(oS)(o)--O, i =  1, . . . ,k.  
j = O  

It follows from Corollary 2.1 that Mo has at least r knots in (0,oo). Thus 

o< ~1 <. ' -  <~,. 

Secondly, if  A..~_~ # 0  then M o satisfies 

"-~ Ass AvAj'J Ai,,_l]M~os)(O)=O, i = l , . . . , k  
j=o . - 1  i # #  

Since the matrix if A,j - A . jA , ._ I /A . ._~  II is SCk_~ and of  rank k - 1 we again 

infer that M o has at least r knots in (0, ~ ) .  

It remains to prove that the coefficients of  M(x,z) are uniformly bounded. 

Since M(t._ k + 2,, z) < 0 there exists a fix) > t._k + 2, noted earlier, satisfying 

M ( t ( ~ ) , ~ )  - -  O. 
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According to Proposition 3.2 the coefficients of M(x,  ~) are uniformly bounded on 

(Co, ~] provided that t(z) is uniformly bounded on (C0, ~]. But this is the case as 

assured by Corollary 5.2. 

6. Fundamental theorem for two-sided boundary conditions 

This section is devoted to completing the proof of Theorem 0.1 in the case of 

general boundary conditions at both end points. The method of analysis proceeds 

by induction on the form of the boundary conditions at the point 1. We treat 

first the case of I boundary condition. 

Given 0 < t~ < ... < tn_k+2r- 1 < I it is desired to show the existence of  a 

monospline satisfying 

n - 1  

Z 
v = O  

n - 1  

Z 
i = 0  

A~vM(')(O) = O, 

M(ti)  = O, 

biM(~ = O, 

# = 1, . . . ,k  

i =  l , . . . , n - k  + 2 r - 1  

/t = 1, . . . , /  

where the b~'s are of a single sign and at least one is nonzero. Without loss of 

generality, we may assume 

hi>O,  i = 0 ,1 , . . . ,n  - 1. 

Choose a point in (t,-k+2,-1, 1) and label it t,-k+2r. During the course of the 

analysis of Section 5 we contructed a family of monosplines 

I1--1 

M(x , z )  = x" + ~, 2i(z)x t + ~] ci(z)(x - C,(z))~+ -1 
i = 1  i = 1  

where 0 < ~l(z) < ' "  < C,(z) = z, {2,(z)}, {c,(~)} are continuous and 

n--1 

(6.1) ~, A~vM(V)(O,z) = O, n = 1 , . . . , k  
V=0  

(6.2) M ( t i , z ) = O  , i = l , . . . , n - k + 2 r - 1  

for zin [-r The point Co is uniquely determined by the additional 

requirement that 

(6.3) M(tn-k+2r, Co) = O. 

M(i)( 1, ~o) > O, i = O, 1, ..., n - 1. 
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Bto "'" Bt,~- i 

Moreover,  recall that 

lim M(~ = - oo. 
r " * t n -  k,+ 2 r -  1 

Hence ]~'_--olbiM(~162 changes sign on [~o,t ,_k+z,_0. Thus there exists 

Zo, 4o < Zo < t,-k+ zr-1 satisfying ]~-o~bzM(/)(1, %) = 0. The desired monospline 

is manifestly M(x,%). Theorem 0.1 is established in the case l = 1. We discuss 

next the case of  l boundary conditions, l > 1. Consider first the special situation 

where the boundary conditions at 1 have an associated coefficient matrix of the 

form Blo ... Bl,t_ a 0 ... 0"~ 
I 

o . . . o . J  

The accompanying rank stipulation implies that the corresponding boundary 

conditions are equivalent to the conditions that M displays a zero of  order I at 1. 

The desired result in this circumstance is an immediate consequence of  Theorem 

5.1. Now assume inductively that Theorem 0.1 is proved for l boundary condi- 

tions fulfilling Postulate II but where also Bu~ = 0 v > m, It = 1,-.-, I and I < m < 

n -  1. We extend the validity of Theorem 0.1 to the case of  boundary conditions 

obeying Postulate II subject to the reduced restriction of  

B.~=O, v > m + l .  

The matrix of the coefficients of  the boundary forms is displayed as 

I Bio ... Bl,m+ i 0 ' "  0") 

�9 I 
B = I  I 

[ .B lo  .-.  B t , , , + l  0 . . .  0_J 

Assume first that the matrix 

~= 

I B11 "'" Bl,m+ ~ 

I 
~.Bzo "'" Bt,,,+ l 
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is SSCt; i.e., every l x l subdeterminant  is strictly o f  one sign. This restriction 

will be removed later. For  convenience we take the sign as + 1. 

Manifestly, we can rewrite the boundary  condi t ions  in terms o f  the equivalent 

matrix 

(6.5) B '  = 

B I l o  . . .  BI lm  0 "'" 0 

B~-I,o"" n;-1,ra 0 

B~o "'" BIm Bt~, + 1 0"" 0 

where B;,m+ 1 > 0 and 

(6.6) 
B,(1,'", l B(1 ," ' ,  l 

\jl,...,jt) =(signBl'm+l)" \jl, . . . ,jt) 

for  all 0 < J l  < "'" <Jr < n -  1. Therefore  wi thout  loss o f  generali ty we may 

assume B has this form. N o w  observe that  the matrices II ( -  1)'A.v 11 and  

/~= I 
Bio ... Blm 0"" 0 ] 

�9 . 

(.Blo ... Blm 0 0 
fulfill the requirements  o f  Postulate II .  Indeed if  2r < l there exists indices 

O<i 1 <. . .<ik <n--1  , O<j~ < . . . < j t < n - - 1  

.( , , l  
\is,"', ik \Jl,"',Jt 

with ju < " = 1, l - 2r. But certainly ~_ l n + 2 r _ k _ l + p ~  ]A "'% 

.0 (6.8) i ~ __<ju for  ju = / t  - 1 

and 

~jo, j o  ~jo, , j o  ~'~ 
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since /~ is SSCz. 

Therefore by the induction hypothesis we are assured of the existence of a 

monospline 

satisfying 

r l--1 r 

M ( x )  = x" + Z ~,~x ~ + E e~(x - {,)~+-~ 
i = 0  i = 1  

0 < ~ 1 < ' " < ~ , < 1  

/'t--1 

E A~M(v)(O) = O, 
v = O  

M(ti) = O, 

m 

B~M(~)(1) = 0, 
v = O  

Note that M(x) satisfies all the constraints necessary to advance the induction 

to the matrix B except for the last boundary condition at 1 which specifically 

requires that the quantity 

# = 1,2,- . . ,k 

i = l , . . . , n + 2 r - k - I  

# = 1,...,1 

n - 1  

Y~ Btv>M(~)(l) = ~, Br,,>M(')(1) + Bt.,,,+IM(m+I)(1) = Bt,,,,+IM~ 
v = O  v = O  

should vanish. 

The monospline M(x) will serve as a starting point for the continuity method 

used to construct the desired monospline. It is convenient to divide the subsequent 

analysis into a series of lemmas. 

LEMMA 6.1. There exists an 8 > 0 and a.family of monosplines 

n - 1  

M(x, 'O = x" + E Z,(z)x ~ + Z c~('O(x - ~,('r))~ -1 
i = 0  i = 1  

determined for each z in [~,, ~, + e) with the properties 

0 < ~l(z) < " "  < ~,(*) = T < 1 

(6.9) (i) M(x,~ , )=M(x)  

n- -1  

(6.10) (ii) 2 A,vU(V)(0,z)=0, # = 1, . . . ,k  
v = O  

(6.11) (iii) M(t~,z)=O, i = 1 , . . . , n + 2 r - k - t  
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(6.12) 

(6.13) 

(6.14) 

Then 
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n -1  
(iv) Z Bu~M(~)(1,z) = O, p = 1,..-,1 - 1 

v = O  

n - 1  

(v) Z Bl~M()')(l,z) > O, 
v = O  

(vi) S + (M(1, z), M'(1, z),..., M(")(1, z)) = 1. 

PROOF. Consider the map ty: E,+z,~ E,+Z,-a 

~': ('~0, .... ~ . _ .  c .  ~ . - . . ,  c .  #,) 

n - 1  n - 1  "~ 

I~o Au~M(~)(O)' M(t,), ]~ B.vM(~)(1) 
= v=O ~ J  

~" k n + 2 r - k - I  l - 1  

Israel J. Math., 

te(ko, ' " , ; ~ . - .  cI, ~,, .-., c .  ~,) = 0. 

The Jacobian of  W with respect to all the variables except ~, (cf. formula (2.7)) is 

o~j~<...<j~-l_-<m l l , '" , ik  1,'",Jl-1 

• K(t l ,  "",tN, Jl, "",]l-1 ) 
\i'~,'",i',-k, ~1,~1,'",~,-1,~,-1,~, 

(N = ,  + 2r - k - I, Ir L~  II -- Ir a~v( -  1 ) %  

Since B is SSG by assumption we invoke Proposition 2.7, Corollary 2.2 and 

(6.8) to conclude that J r  at (ko,- . . ,k,_l ,cl ,{1, .- . ,c, ,{,) .  Now an appeal 

to the implicit function theorem establishes (6.9)-(6.12). 

We next examine the expression 

n - 1  

]~ BI,M(~)(1) = ~ BtvM(~)(t) + Bt,,,+IM(m+I)(1). 
v = O  v = O  

Since Bt~ = 0 for v > m + 1 we refer to Lemma 2.1 to infer that M(m+l)(1) > 0 

and the validity of (6.13) is deduced by direct continuity considerations. Our final 

task is to prove (6.14). From Proposition 2.1 we know that 

S+(M(1, z), ..-, M(")(1, ~)) < I. 

On the other hand, Lemma 2.1 informs us that 

t - 1 __< S+(MO, , ) , . . . ,M(")(1 ,T) ) .  
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To complete the analysis it suffices to verify that ( -  1)IM(1) > 0. To this end, note 

that ( - 1 ) l M ( 1 ) >  0 because S+(M(1) , . . . ,M(n ) (1 ) )=  I and M~n)(1)> 0 prevail. 

Moreover, M(1) cannot vanish for otherwise M satisfies I + 1 boundary conditions 

at the point 1 with associated coefficient matrix 

1 0...  0 0 ...00~ 

t B l o  "'" B l m  0 "'" 

[ 

~Blo ... Bt,, Bl,n+ I ... 01 

which is clearly SCi+ 1 of rank l + 1. This information is incompatible with the 

conclusion of  Proposition 2.2 and the fact that Z ( M )  = n + 2r - k - I. The proof  

of Lemma 6.1 is complete. 

Define ao as the supremum taken over all a < 1 where M ( x ,  0 possesses the 

properties listed in Lemma 6.1 for all z in [~,,a). We will show that the limit as 

z --, ao of  M ( x ,  z) exists and this limit function determines the desired monospline 

fulfilling the requirements of  Theorem 0.1. 

The next lemma formalizes the outcome of this limit process. 

LEMMA 6.2. We have ~o < 1 (ao is defined immedia te ly  above) and 

lim M ( x , z )  =. M ( x )  = x n + ~, 2ix ~ + ci(x - ~i)+ -~ 
�9 "~o  i = 0  i = 1  

0 < ~ t < . . . < ~ , = a o < l .  

Moreover,  M ( x )  satisfies 

n - 1  

Au~M(~)(O) = O, # = 1 , . . . , k  
v=O 

M ( t i ) = O ,  i = 1 , - . - , n + 2 r - k - I  

PROOF. 
monosplines 

n - 1  

B~,~M(V)(1) = 0, /t = 1, . . . , l  
v = 0  

Our first need is to establish that the coefficients of  the family of  

n - 1  

M( ,O - x + E * + - 
i=O i = 1  



442 S. K A R L I N  A N D  C. M I C C H E L L I  Israel  J. Ma th . ,  

are uniformly bounded for z in [{,,"o)- This assertion ensues on the basis of  

Proposition 3.2 in the case 2r > I. When 2r < I boundedness is proved employing 

an argument paralleling that of  Proposition 3.3. In fact, we know from Proposition 

3.1 that {c~(T)}]=l are bounded on [{,,~o). We now show that {2i(~))~'2 ~ are also 

bounded. Set 

Y ( x , z )  = x" + ~ ci('r:)(x - ~ i (z ) )+ ~ 
i = l  

n + 2 r - 2  

P ( x , z )  = 2~ ~i(T)X i, (~i(T) -- O, i > n). 
i = 0  

Then 

M ( x ,  z) = Y(x ,  z) + P(x ,  z) 

and there exists a constant C such that 

n - 1  

-- I s  c ,  . = 

tt--1 

[ L s  I X Bu, Y( ' ) (O, ' c ) [ -  < c ,  It = 1 ," ' ,1  
v=O 

max I Y(x,z)J < C 
O_<x<l 

for z e [~,, ao)" 

In view of (6.10)-(6.12) we have 

n--1 

Z 
v=O 

n - t  
Z 

v=O 

Au,P(~)(O, z) = - H~,(z), 

P ( t i , z  ) = - Y ( t i , z ) ,  

Bu~P(~)(1, z) = - L~(z), 

It = 1,.- . ,k 

i = 1 , . . . , n + 2 r - k - I  

It = 1 , . . . , 1 - 1 .  

y2 s n + 2 r - 2  These are n + 2 r - 1  linear equations in the n + 2 r - 1  "unknowns"  t,~i~ Jsi=o 

with the inhomogeneous right hand side consisting of  quantities uniformly 

bounded in z. Thus, we need only check that the determinant A of the system 

(which is independent of  z) is nonzero. Expanding this determinant A (cf. (2.7) of  

Section 2) gives  , (iii jo jol) 
"", ln+2r_k_ 1 
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where 0 < i  l < . . . < i k  < n - 1  a n d j ~  ( # = 1  ... l) and ~ > 0 .  But as 

previously pointed out (see 6.7)) we have 

, t  jo__< t n + 2 , _ k _ l + ~ ,  # = 1 "'" l - -  2r 

and so A # 0 by virtue of Proposit ion 2.7 and Lemma 1.1. 

The boundedness of  the coefficients is proved. Since the coefficients are bounded 

there exists a sequence z~ -~ ao such that the limit relations 

) , i ( ~ )  --, 2", i = 0 , 1 , . . . , n  - 1 

ci(T,) ~ c*, i = 1 , ' " ,  r 

~,(zu) ~ ~*, i = 1 , ' " ,  r 

persist. 

Set 

n - 1  

M , ( x )  = x"  + E 2~x  i + (E c ~ ( x  - ~,)~+-t  
i = 0  i = 1  

O< = ~1 = <42  = < "'" = < ~r=~O = < 1. 

Then clearly for  all x 

(6.15) l im Mti ) (x , ' r  -- (0 M .(x) ,  i = 0,1, ..., n - 2. 
/l ---~ oO 

We will next perform a computation to show that the knots increase as z 

increases. Direct differentiation yields 

(6.16) 

i i - - 1  

= z - 1  
a'c M ( x , ' ~ )  i = o i = 1 

, ~9 ( t -  r  - x  

t = 1  

and we also obtain 

A~v M(~)(0,z) = 0 ,  # = 1 , . . . ,k  
v = 0  

(6.17) f - - ~ M ( t i , z )  = O, i = 1 , . . . , n  + 2 r  - k - l 

/~,~ M~V~(1,~) = t~o M( I ,Q ,  # = 0 , 1 , . . . , / -  1 
v = O  
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B = 

"1 0 . . - 0  0 . . . 0 "  

BlO Bim 0 "" 0 

. B l _ l .  o Bt_l. , ,  , 0 ... 03 

Regard the equations (6.17) as a system of n + 2r linear equations in the n + 2r 

"unknowns"  2~(z),... 2'~_l(z),c~(z),Cx(Z)~'l(z),...,c',_l(z),C,_x(Z)~'_l(z),c,(z)~'~(z ) 
(recall that ~,(z) = z). Solving gives 

ci(z)~',(.c ) = (--1)"+Z'-k-'+k+"+2'+l ~--f--~M(1,Z)~ 

(6.18) 

= ( - 1 )  t - t  -~-z M(1,Q ~-~L, i = 1,2, . . . , r  

= - ifl X 1, . . . ,k  1 , . . . , / - 1  
O<--il<.,,<ikNn--1 j = l  
O~jl<...<jr--l<-ra i l ,  "" ,  ik Jl, "",Jr-1 

t l , ' " ,  tN, J l ,  " " , J r - 1  
x K \ "  i' ) 

l l , ' " ,  n-k ,~l ,~l ," ' ,~i- - l ,~i- - l ,~i ,~i+l ,~+l"" ,~r  

A =(_l)k(k_l)/2 ~, ( ~ = ) , ~ ( 1 , ' " , k )  (1 , . . . , l - - I )  
o~il<...<ik_Sn-1 - 1 ij! \ i l , . . . , i  k B \ j l , ' " , j t _  x 
0 = < J l  < ' " < J r  - 1 < m  

K(tl, '",tn,O, J l , ' " , J t - 1 )  
• \., ., , 

h ," ' , t , -k  ~l ~l,"" ~,,~, 

With the help of Proposition 2.4 and Lemma 1.1 we find that ( - 1 )  k(k- 1)/2ekA > 0 

(when 2r < l use the indicesju -- #,/~ -- 1, ..., l -  1) and (1) k(k-1)]2 eke~A ~ > 0 by 

virtue of Lemma 1.1 where ek = + 1 is the sign of the kth order minor of A. 

Also we know according to Proposition 2.3, that c~(z) < 0, i = 1 , . . . , r .  These 

facts plus that ~,(z) for i = r in (6.18) lead to the inequality 

(6.19) ( -  1) s -~-z M(1,z) >__ 0, v e(~,,ao) 

and then in (6.18) with i = 1 , 2 , . . . , r -  1 the result 

(6.20) ~'~(r > O, i = 1,..., r, z ~ (g,, %). 
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The relations (6.20) imply, in particular, that 0 < {~ < 4"  and consequently 

n--1 

2 Au~M~)(O) = O, # = 1,... ,  k. 
i = O  

Owing to (6.15) and because of  the stipulation Bu,,_ 1 = 0, # = 1 , . . . , l -  1 we 

deduce that M.(x )  further satisfies the equations 

n--1  

Bg~M, (1) =0,  # = 1, ..., I - 1 
(6.21) v=o 

M.(t i )  = 0, # = 1,- . . ,n + 2 r  - k - I. 

Now let r '  denote the number of distinct knots of M inside (0,1). Proposition 2.1 

and Lemma 1.2 affirm that 

o r  

Therefore r '  = r and so 

n +  2 r - k - l < n  + 2 r ' - k - l + l  

2r < 2r' + 1. 

0 < ~1 < . . .  < ~ r = ~ o  < 1. 

It remains to demonstrate that 

n - - I  

7s B,,M(V).(1) = O. 
V=0 

~ v = O  Iv , Suppose to the contrary that " - I B  M(V)(1)> 0. I f  we can show that 

S+(M,(1), . . . ,M(,)(1))=I we then appeal to the implicit function theorem as in 
Lemma 6.1 to extend ~r = % to the right. This provides a contradiction to the 
the definition of %. However, Proposition 2.1 and Lemma 2.1 in conjunction with 
(6.20)-(6.22) imply 

l - 1 < S+(M,(1),.-.,M(,)(1)) < I. (6.22) 

But (6.19) implies 

It follows that 

( -  1)lM(1,z) >= ( -  1)lM(1). 

( -  1)'M,(1) > ( -  1)IM(1). 

Recalling that ( -  1)lM(1) > 0, a fact noted during the proof  of Lemma 6.1, we 

obtain the identical inequality for M,(1). Since M(",~(1) > 0, it follows from (6.22) 

that 
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S+(M,(1),  ..., M,(")(1)) = I. 

The proof  of Lemma 6.2 is complete. 

The conclusion of  Lemma 6.2 is synonomous with that of  Theorem 0.1 except 

that we need to relax the SSCi hypothesis on the boundary conditions. Suppose that 

IIB, vlI,=I,...,t is merely SCI, By a standard approximation procedure there 
v = 0, . . . , ra+ 1 

exists for each a > 0, B(a)= II Bud(a)I1~=1,,, which is SSC, and such that 
v = 0 , 1 , . . . , m +  1 

lim~_.| = B (see [7, p. 22]). The indices of  Postulate II for tf B~vll certainly 

apply for B(a). Hence there exists 

n--1 

M,,(x) = x" + Z ).i(a)x i + ~. c,(a)(x - ~(a))"+ -1 
i = 0  i = l  

fulfilling the conditions 

n--1 

~, At,~M(*)(O)= O, # = 1,...,k 
v=O 

M , ( t , ) = 0 ,  i = 1 , . . . , n + 2 r - k - I  

n - - I  

]~ BuvM~V)(l)= 0, # = 1,.. . ,l .  
v = 0  

If  the coefficients of M,  are uniformly bounded then we can argue as in Lemma 6.2 

and clearly lim,_.~M~(x) furnishes the desired monospline. 

In the case that 2r > I boundedness of {2i(a)}, {c~(a)} follows along the lines of  

Proposition 3.2. When 2r < 1 we reason as in Proposition 3.3 or Lemma 6.2. 

Indeed, let P . ( t ) =  ~ " ~ n + 2 r - 1  ~i=o 2i(6)t', 2~(a)= 0, i>_--n. Then P,  satisfies an in- 

homogeneous system of linear equations. The inhomogeneous terms are uniformly 

bounded in a, and if A, denotes the determinant of the system then 

Ijl-~= 1 f l ' " " k l  ~-li'"" / 1 A, = ( -  1) (k(k-1))/z E ij! ~ a B# 
o<Jl<'"<jl<m--1 J k'il' ' '"ik') l , ' " , J l J  O<il<...<ik<n-1 

x K ., 
\ l i t  " " )  l n + 2 r - k  

(N = n + 2 r - k -  l) . 

which is bounded away from zero. The remainder of  the argument proceeds 

mutatis mutandis. 

7. Applications and extensions 

As an application of  Theorem 0.1 we establish the existence of  certain types of  
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quadrature formulas exhibiting "double  precision".  These formulas can be 

interpreted as constituting extensions of  the classical quadrature formulas of  

Gauss, Rado and Lobbato. The connection between "double precision" quadra- 

ture formulas was first indicated by Schoenberg [16], (see also [9]). 

Let n, k, l, r be natural numbers satisfying n =< k + l + 2r, and special indices 

O<=ia < . . . < i g  < _ n - I  

0 <=Jl < "'" <Jr <- n - 1 

obeying the relations 

(7.1) js`<=i'v+2r v =  l , . - . , n - - l - - 2 r  

when n > l + 2r and s = k + l + 2r - n. Consider arbitrary but fixed points 

O < x  1 < - . .  < x s < l .  

THEOREM 7.1. There exists a unique quadrature formula  

f0 
1 k l 

(7.2) f ( x ) d x  ,.~ ~ As`f(i")(O) + ~, Bs`f(J)(l) + 2if(~i) 
g=l /t=l i=i 

with 0 < 4 1 <  "'" < 4, < 1; i.e., As`, B~, 2 and ~i exist such that equali ty  prevails 

in (7 .2) for  the f a m i l y  of  funct ions {1, . . . , x  "-1, (x - x l ) y  I, . . . ,(x - x~)'+- 1 }. 

Moreover, the weights {2i}~'=a are all positive and the signs o f  {A,}, {Bs`} are 

computed by the formula S+(e) = n - k, S+(fl) = n - l where 

(7.3) 

O~ i If ' i f i = n - l - i ' , ,  # = 1 , . . . , n -  k 

- 1)"-1As`, i f  i= n 1 - is,, It = 1 , . . . , k  

L 1 ,  i f i = n  

(i , i f i = n - l - j s ` ,  I t = l , . . . , n - 1  

- 1)J"Bs`, i f i  = n - 1 - j s ` ,  It = 1 , . . . , l  

( .1 ,  i f i = n .  

PROOF. Consider a monospline 

X n n -  1 

v . - ~ i ) +  �9 M(x)  =--~.  + E bvx + c ( x  , -1  
i = 0  i = 1  

Let f be of  continuity class C", then integration by parts produces the identity 
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fo ~ ~1 
f ( x )  dx = 

j=O 

(7.4) 
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( _  1)JM(.- 1 -j)(1)f(j)(1) _ 
n - - 1  

E 
j=O 

( -  1)JM(n-J- 1)(O)f(J)(o ) 

f01 - ~, Ck(n -- 1)lf(~k) + (-- 1)" M(x)f(")(x)dx.  
k=l  

Now determine M(x)  as the monospline of degree n involving r knots in (0,1) 

and satisfying the conditions 

(7.5) MO'-l-v")(O) = O, # = 1, . . . ,n - k 

(7.6) M(x i )=O,  i = 1,. . . ,s  

(7.7) MCn-~-J ' ) (1)=O, # = 1 , . . . , n - l .  

The existence of  such a monospline is assured by virtue of  Theorem 0.1 and the 

stipulations of  (7.1) and the fact of  n + 2r - (n - k) - (n - l) = s. We write 

Xn n -  1 
~(x)  = ~ + ~: z,x' + ~: c,(x - ~,)~-1. 

i=O i=1 

Substituting in (7.4) yields apart from the integral on the right the quadrature 

approximxtion 

x )dx  .., 

(7.8) 

( _ 1)~.l~r(n- l -i .)(0)fO.)(0) 

I 

-- X ( - -  1 ) J~ (n - l - Ju ) (1 ) f ( J " ) (1 )  
/t=l 

- ( n - l ) !  ~ c i f ( ~ i l = Q ( f ) .  
i=1 

This quadrature formula is manifestly exact for the functions {1,x, . . . ,x "-1} 

by the nature of  the remainder term in (7.4). Making the obvious identifications 

of  {2~}, {A,} and {B,} we see that the relations of  (7.3) are valid according to 

Proposition 2.6. 

To show that the quadrature formula (7.8) becomes equality for the function 

(x -xi)"+ -1 is equivalent to showing equality for the function (x~-  x)~. -1 since 

(x  xi)"+- 1 + ( _  n . -  i i - 1) ( x i -  x)+ = (x - x 3 " -  

With the help of (7.6) we obtain 
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ol(X~ - x)].- ldx 

fo i = x i - x )" -  adx = 

n 
Xi 
n 

- (x~ - x ) "  x, 

n ;o 

" "-~-~" E e j ( x , -  g j ) . U  ~ -- ~n-- 1 -- iuXi -- = (n 1)! - f , =  ~=1 

-,=~ -(~ i5 ~;~x,-x)"-x=o 

- ~: ~j (x , -  gj)V ~ ] 
j = t  

= Q( (x l  - x ) V 1 ) .  

Theorem 7.1 is also proven in [10] whens = 0. In [10] the nodes of the quadrature 

formulae are identified as the zeros of  a certain extremal polynomial. 

The results of  this paper extend to the case of  Extended Complete Tchebycheff 

systems. We merely state the result without entering into details. 

I f  0 < wi < wi(x) < ~, < oo for x ~ ( -  0% + oo) we define 

Uo(x) = Wo(X) 

)fo x (~ )d~ U l ( x ) =  Wo(X wl 1 1 

Un(X) = Wo(X) foXwl(~l )  fo~tW2(~2). . .  /~ r  Jo w,(~,)  d~, . . ,  d~x, 

and 

a [,I,(O] D/I, = ~  [ -~j  j = O , 1 , . . . , n .  

U "  A Tchebychetfian monospline with respect to { ~}i =o has the form 
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(7.9) U.(x) + 
n - 1  

Z 2~Ui(x)+ Z q'~.-l(x,~3 
i = O  i = 1  

where 

O(X) Wl(~I) W2(~2) "" Wn(~n)d~n "'" d~l, 
r = 

r  

If II and [! B~I[ satisfy Postulate II and (7.9)satisfies boundary conditions of 

the form 

n--1 

]~ Au~(D~M)(O)= O, # = 1 , . . . , k  
v = O  

n - 1  

Z B~,~(D~M)(1) = O, t t = 1 , . . . , l  
v = O  

where 

D v =  D~Dv-1 ... DtDo, D O = Identity operator 

then Theorem 0.1 persists. 

An important particular case is the system {1,..., x"-1, f(x)} where f(")(x) > 0. 

Hence the fundamental theorem applies if x ~ is replaced by any function whose 

nth derivative never vanishes on [0,1]. 
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