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ABSTRACT

The existence and uniqueness of monosplines satisfying certain boundary
conditions with a maximal prescribed number of zeros is established. This
result is of value in characterizing optimal quadrature formulas and in
problems of best approximations involving free knots,

0. Introduction

A polynomial spline s(x) of degree n — 1 with r knots {£}] (— 0 <&, <&,
< - < & <o) is a function of continuity class C*?( — o0, + o) such that
s5(x) reduces to a polynomial of degree n — 1 in each of the intervals (— c0,¢,),
[£1,&2),,[&,0). This concept was first formalized by Schoenberg [12] in
1946. In 1958 Schoenberg [16] introduced the notion of a monospline of degree n
with k knots formed by adding the monomial x" to a spline function of degree
n — 1 with r knots,

Monosplines arise naturally in characterizing optimal quadrature formulas for
certain functions, see [13], [14] and [4]. Schoenberg [16] announced a version
of the fundamental theorem of algebra for monosplines. This roughly asserts that
every monospline of degree n with k knots admits at most n + 2r zeros and
conversely, given — oo <t; <t, £ -+ S 1,4, < 00 obeying the restriction that
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no t; has multiplicity exceeding n + 1, then there exists a unique monospline of
the requisite type whose zero set coincides with {t,}]*?". Schoenberg proposed a
proof using moment methods which appears to work only for some special cases.
Karlin and Schumaker [8] provided a complete proof based on perturbations
arguments, facts pertaining to totally positive transformations and the study of
certain determinants. The fundamental theorem of algebra for monosplines serves
a variety of applications including the problem of characterizing best approxima-
tions to certain function in the sup norm (see Johnson [3], Schumaker [17] and
Fitzgerald and Schumaker [1]).

Motivated by work of Schoenberg [12] on characterizing optimal quadrature
formulas (‘‘optimality’’ as distinguished from “‘best in the sense of Sard”’ allows
the knots in addition to the coefficients of the quadrature expression to be regarded
as free variables) the first author was led to the problem of investigating the
validity of the fundamental theorem of algebra for monosplines vanishing at
prescribed points and also obeying suitable boundary constraints. The results were
announced in Karlin [5]. The present collaboration elaborates the complete
proofs of these results embracing a number of simplifications of the original
arguments of the first author.

Before we proceed further it is useful to fix some notation and terminology.

Let A = | 4;; | then define

4 (l"”) -
jl’“"]p

A is said to be sign consistent of order p (abbreviated SC,) provided all p x p

A A

irg1? i1jn

A A

inip
subdeterminants of A maintain a single sign; i.e., there exists ¢, = & 1 such that
(il’ ey lp)
gd \. :
4 s s p
for all ’s and j’s, i) <+ <ip, j; <+ <j,.

Monosplines of order n with r knots {&;},2,, &; < - < ¢, in (0,1) admit the
explicit representation

v

0,

n—1 r
MX)=x"+ X ax'+ X c(x—&)!
i=0 i=1

0.1)
(x =x" forx=0 and 0 otherwise).
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We will be interested in monosplines satisfying boundary conditions of the form

n—1
LK{k: E AvuM(u)(0)=05 V= 1:2""9k
0.2) #=0
n—1
B: X B,M®(1)=0, 2A=1,2,-,1
n=0
where the matrices A and B obey Postulate I below. The collection of all such
monosplines will be denoted by #, (7, N%)).
We stipulate to prevail throughout the sequel.

PosTULATE L.

0=k, Isn

(ii) The k x n matrix 4= “ A, (— D ” is sign consistent of order k (SC;)
and has rank k. The | x n matrix B = H B, H is SC, and of rank 1.

Postulate I has wide scope. In fact, the usual types of boundary constraints
occuring in the study of vibrating systems of coupled particles obey Postulate I
(see Neumark [11], Gantmacher and Krein [2] and Karlin [7, Chap. 10].

Subject to a further meshing requirement on the boundary conditions (which is
decribed later), we will establish the fundamental theorem of algebra for mono-
splines of class (7, N %,). The precise statement is as follows.

TueoreM 0.1: If M is in M, (£, N %B)) then M has at most n + 2r — k — 1
zeros in (0,1). Conversely, if n +2r —k — 1 points 0 <t; St, < - Styyppi-*
<1 are prescribed obeying the restriction that no t; exhibits multiplicity
exceeding n + 1, then there exists a unique monospline M in M, (4, N\ H)

whose zeros are exactly the set of points {t}; 2 %7,

The result also holds for Tchebycheffian monosplines but we will confine the
exposition to the case of polynomial monosplines. The extension is by now
standard (e.g., see Karlin and Studden [9]).

Some general comments on the proof which is somewhat intricate. The method
of Karlin and Schumaker [8] needs refinement and modification to take account
of the imposed boundary conditions. We employ a continuity method which
decisively relies on the implicit function theorem. The result on the fundamental
theorem of algebra for monosplines of [8] serves as the starting point of the
continuity method.

The proof divides into two main parts. The first part deals with the case when
I = 0; that is, no boundary conditions are imposed at the point 1. The resuit
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from this step serves as the point of departure of an induction on the form of the
boundary conditions at 1. Several interesting ancillary results emerge from oug
analysis.

We close this introductory section by indicating the organization of the paper.
Section 1 reviews several basic properties of the fundamental spline kernel.
Preliminary aspects of Rolle’s theorem and interpretation of the notion of multi-
plicity of a zero for spline polynomials are recorded here.

Bounds on the number of zeros and their consequences is the main topic of
Section 2. Relations locating the knots relative to the zeros for monosplines with
a maximum number of zeros are also developed.

Section 3 is devoted to deducing a-priori bounds on the coefficients of a mo-
nospline having a full set of zeros.

The fundamental theorem of algebra for monosplines with one-sided boundary
condition is established in Section 5. The proof of the general assertion of
Theorem 0.1 is the content of Section 6. Some applications and extensions are no-
ted in Section 7.

1. Preliminaries

Fundamental to the study of interpolation and approximation by splines on the
interval [0, 1] and the development of Theorem 0.1 is the kernel function K(z, w)
defined on Z x W, where Z and W are respectively the specific ordered setg
(consisting of a set of integers and points of an open interval)

Z={x,0,1,---,n—1;x€(0,1)}
and

W ={0,1,2,---,n — 1, &; £e(0,1)}.

K(z,w) is defined explicity as follows:

K(x,i) = ufx)=x',

K8 = (x=OF",

(L1) , d
K(j»8) = DIO(xO)]:=i(®x,O) = (x = 97", D = -, D' = DI"'D),
K(,i) = Dhu()] =1

Note that in the domain Z the integers are arranged to follow the x values, while
in W they are placed prior to the & values. The kernel K(z, w) has total positivity
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properties important for the proof of Theorem 0.1. For other applications to the
theory of interpolation of arbitrary data by splines with prescribed knots we
direct the reader to [6]. For ready reference we record the result of Theorem 1.1
below. The proof can be found in [6]. Let

0<x, x5 Sx,<1
0<é 250258 <1
0=i; <ip<-<i,=n-1
05ji<iz<<jpsm-—1

be arbitrary apart from the restrictions A + p =0 + 1;
(«) no more than n consecutive x’s or {’s coincide; and
() at most n + 1 of the x’s and &’s are equal to a common value. Define

X5 X0 Jis “'ajp
K
i, s by 513523'“96:

uil(xl) ey (%) (x; — 51)1_1 e (X “fr)':»_l

u; (x;) - “i,(xa) (%, — 51)1_1 e (x ~ &, ':1

(Jl)(l) . (11)(1) (11)(1 1) .. (11)(1 ér)

(Jﬁ)(l) (39)(1) (19)(1 - 1) (3.0)(1 _ {r)

When several of the x’s and for &’s coalesce we invoke the usual convention of
replacing rows and/or columns by consecutive derivatives. The following is
Theorem 1’ of [6].
LemMma 1.1. The kernel K(x,&) is totally positive, i.e,
Xg,tty Xz, jl) ”'ij
(1.2) K ( ) 20
11"",1.0; 51,62,“',53

subject to («) and (B) (when n consecutive x’s ({’s) agree, the n — 1th derivative
in (1.2) is taken as a right (left) derivative).
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Moreover strict inequality occurs in (1.2) iff when
(@) 6 = A then

iy S i p=1,2,0—1
(1.3) =t

xv<€n—a+w V=1,2,"',A

prevails, and when

(b) 0 < A then

xv<én—a+va V=1,"-,/1

(1.4)

€u<xa+us #=1,2,"'J~‘“0'
holds with two added exceptions.

Iftznand &,y =&,y =-- =&, for some v with v+ n <, then (1.2) is
also positive where {,y = X,1,. If AZ nand x4y =X,, =+ =X, for some
p with p+ n £ 4, then (1.2) is also strictly positive if X, p =&, 4p_g.

Some further notation and terminology is now appended. Let S™(a,, -, a,,)
denote the number of sign changes in the sequence a,, -+, a,, where zero terms are
discarded. Also we denote by S*(ay, -, a,,) the maximum number of sign changes
achieved in the vector (a,, -, a,) by allowing each zero to be replaced by + 1.
We will need the elementary fact

(15) S+(a1,a2,“'sam) + S+(a1’(_ 1)02, "':(_ l)m_lam) g m-—1
The following lemma will be useful.

LemmAa 1.2. Let feC™[0,6], 6 >0 and suppose f™(0)5£0, then there

exists g9 > 0 such that for 0 <e <egg
S*TSO), —£(0), -+, (= D (O) = S7(f(e), —f'(&), (= 1Y ™(e)),
fe&)#0, i=0,1,-,n and signf™(0) = signf®(e).

The proof involves a simple induction on n.

Let us now make precise the notion of a multiple zero of a monospline M in
M, (N FBy). Since M is globally of class C"~2(— o0, + ®) a zero of order
t < n — 2 has the usual interpretation

M(z) = - = M®"1(z) = 0 and M¥(2) 0.

Moreover, the multiplicity of a zero of any order is unambiguously defined
provided z is distinct from a knot. In the case when £ is a knot of M and



Vol. 11, 1972 MONOSPLINES WITH BOUNDARY CONDITIONS 411
M= = M) =0

then we adopt the following convention. Set 4 = M®~1 (£7) = lim M"~)(p),
018
B = M"Y = lim M®~P(p), then ¢ is said to have a zero of order
Pl

i) n—-1,if4-B>0

(i) n,ifA-B<0

(iii) a) n,if A-B=0 and B—A4>0

b)n+1,if4-B=0 and B—A<0.
We denote by Z(f;(0, 1)) the number of zeros of f on (0, 1) where a zero is counted
with its multiplicity. (Z(f;I) will likewise represent the number of zeros on 1.)
Rolle’s theorem in its simplest form does not yield useful bounds for Z(M; (0, 1))
when M e, (/, N %,). The following classical extension of Rolle’s theorem
will serve in our analysis.

LemMAa 1.3. Suppose fe C™[0,1] and f, f',---.f™ have a finite number of
zeros in [0,1] then

Z(f3(0,1)) £ n+Z(f™;(0,1)
= S*(f(0), = f'(0), -+, (= 1)Yf™(0))
- S+(f(1)f9 '”:f(n) (1))
provided f™(0)f™(1)#0.

For the case when f is a polynomial of exact degree n, where S is replaced by
S~ this result is attributed to Fourier and Budan. A proof can be found in [7,
Chapter 6]. For completeness, we sketch the main steps. An easy induction on n
establishes.

Z(fi(e1 =) S n+Z(f7;(s,1 —¢)
— ST(f(e), = (&), (—= F )
— ST(f(I'—e), f' (1 — &), f (U —¢))
provided [ 7= of(e)f (1 — &) #0. Appeal to Lemma 1.2 and letting 0
produces the desired result.

2. Bounds on Z(M; (0, 1))

This section is devoted to developing bounds on the number of zeros of the
monospline M of type 4, (&7, N%,). A series of consequences including in-
formation relating the location of the zeros relative to the knots will also be
pisclosed.
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The next proposition of independent interest also has utility in the general
analysis of securing bounds on Z(M;(0,1)).

ProPOSITION 2.1. Let M be a monospline of degree n

M(x) = x" + nig X'+ _i‘.l cf(x — &)1
0<¢é <é < -<é <l
then
ZM; (0, 1) S n+2r — STM(0), — M'(0),-,(~ 1)"M*(0))
— STM(1),M'(1), -+, M™(1)).
Equality holds iff for i, we have
STM(E+), — M'(Ei+), (= D'MP(E+))
+ STM(E=), M=), MO =) =n +1,-2,
i=1,-,r.
where 1, is the multiplicity of the zero of M at ;.
Proor. Repeated application of Lemma 1.3 yields
ZM;(0,6)) £ n = S*H(M(0),,(~ 1'M®(0))
— STMED), -, MP(ET))
ZM; NS no— STMED, (= 'M™(ED)
SHM(E3),  M™AED)

ZM; (1) = n

STM(E), (= 'MOEN)
— STM(1), -, M™(1)).

Adding these inequalities with due account of the possible zeros at the knots
produces the bound

ZM;(0,1)=n+2r - s W(M, &) — S*(M(0),(=1)M’(0),--, (— 1)"M™(0))
i=1
— ST(M(1), M'(1), -, M®™X(1))
where W(M, ) is an abbreviation of the quantity
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SHM(E), = M), -+, (= )"M™(ED)
+ ST(M(E),M (&), MPEDN) +2 —n -,

and r; denotes the multiplicity of the zero at £;. The proof will be completed by
validating the inequalities W(M, £,) = 0. This is accomplished by examination of

several cases.
Ho=r,=n-2
W(M,E) 2 2+ ST(MEE), -+, M™(E))
+ ST )MOED), o (= DPMOEN +2 - n -,
2—n+7r,+STMENE), -, (= D"IMET(EY)
+ STMOAED, -, M)
22—-n+r+n—-r—2=0

v

where the last inequality emerges by virtue of (1.5).
() r,=n-1
W(M,E) =1+ S*(M"™UED, D + ST(- M*IENH, =2
(iii) ; = n and M@~ V(M D(ED <.

(It is convenient at this point to refer back to the definition of multiplicity of a

zero at a knot, see Section 1),
W(M, &) = ST (M"(EN, 1) + ST~ MUIEN, D 2 0.
(v) 1= n, MOTDEMOTDED) =0, MOTIED) < MUTHED.
It follows that W(M,¢&;) =2
(v) r,=n+ 1implies W(M,&) =0
The proof of Proposition 2.1 is hereby complete. ||

For M to satisfy the boundary conditions 7, and Jor %, entails certain sign
change properties. The next lemma connects these notions.

Lemma 2.1, If A= 4, is a kxn SC, matrix (k < n) of rank k then
Ae =0 for a vector e requires S¥(e) Z k.

The proof involves a direct application of Theorem 2.2 of [7, Chap. 5].

Proposition 2.1 can be combined with Lemma 2.1 to yield the desired bound on

Z(M;(0,1)).
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PROPOSITION 2.2. Let Me M, (4, N %)) then
ZM;(0,1))Sn+2r—1—k

Careful scrutiny of the proof of Proposition 2.1 reveals that when W(M, &) =0
either

MO™DED) >0, MUI(E) <0
or M has a zero of order n + 1 at ; and then
MOTRE) = MOTHED) <0,
Stating formally this fact, we have

ProPOSITION 2.3. Let M be a monospline of degree n with r knots interior to
[0,1], viz

M(x)=x" + nil Axt + é ci(x — &)L
i=0 i=1
If
Z(M;(0,1)) = n +2r — S¥(M(0), — M'(0),---,(— 1)"M®(0))
- S+(M(1),M’(1), "'9M(")(1))
then

Ci<0, i=1,2,"',r.
The next proposition concerns bounds on zeros of derivatives M®(x) of M(x).

PRrROPOSITION 2.4. Let

n—1 r

Mx)=x"+ X Ax'+ X c(x—&)t
i=0 i=1

0<é < <é <,

If
Z(M;(0,1)) = n + 2r — ST(M(0), — M'(0),---,( — 1)"M™(0)
— S*T(M(1), M'(1),---, M®(1))
then
@D ZM';(0,1)=n—1+2r — STM'(0),---,(— 1" 1M™(0))

= STM(1)-+, M®(D)).

Moreover,
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ZM®-V; (— 0, + ©)) =2r + 1.

Proor. Note with the aid of Lemma 1.2 we may assume without restricting
generality that M@(0)M¥Y(1)#£0, i =0,1,---,n. Subject to the zero convention
set forth in Section 1, it is straightforward to strengthen the conclusion of Rolle’s

theorem asserting specifically that
Z(M; (0,1)) + S™(M(0), — M'(0)) + S™(M(1),M’(1))
< ZM';(0,))+ 1.
This inequality in conjunction with the hypothesis implies
Z(M';(0,1)) 2 n — L+ 2r = ST(M(0),++, (= )"M®(0)) ~ S~(M(1), -, M™(1))
+ ST(M(0), — M'(0)) + ST (M(1),M'(1))
=n—1+2r—S"(M'(0),,(~ 1)""1M"(0))
= ST(M'(1), -, M™(1)).

Proposition 2.1 applied to M’ combined with the inequality just proved confirms
relation (2.1). Repeated application now gives

ZMO™;0,1) = 2r + 1 = §7(= M®~(0), 1)
— ST(M®V(1),1).

Since

ItA

0
1

X+o X

M(n—l)(x) — {

x+f x

[\

it is easy to check that
ZM® D5 (= 0,0]) = S7(= M®79(0),1)
Z(M@V: 1, 00)) S(M®™~V(1),1).
PROPOSITION 2.5. Suppose Me M, (4, N %) and
ZM;(0,1)=n+2r—k—1

then
() S*M(0),-,(— "M@ D(0)) = S*(M(0),---,(— 1'MP(0)) =k
(i) STM(®), -, MO~I(1)) = ST (M), , M) =1 (2.2)

(iii) ZM*"~ ;0,1 =2r + 1.
Proof, By Lemma 2.1
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STM(0), -+, (= 1M 2 k
STM), -, MO (W) 2 1
and so
k+1<STM(0),-,(— 1)'M™(0)) + SH(M(1), -+, M®(1)).

Comparing these inequalities with the conclusion of Proposition 2.1 we see that
statements (i) and (ii) are correct. It follows that

M&® (1) =0, M*D(0) £ 0.

Hence, from Proposition 2.4, we infer that
ZM®V;[0,1]) =2r + 1. I
Consider boundary conditions of the form

MEX0)=0, p=1,-k

(2.3) M¥W1) =0, v=1,-,1
0<i,<<ip=n—-1,0gj,<<j;Sn-1.

As a consequence of (2.2) we deduce

PROPOSITION 2.6. Let M be a monospline of degree n with r knots in (0,1)
n—1 r
MxX)=x"+.% Ax'+ Z c(x—-&)"N
i=0 i=1

If Z(M;(0,1))=n+2r —k —1 and M satisfies (2.3), then

(@ (- l)vM(i)(1)>0, ey <1 <lgoyry, v=0,1,-,k
(b) (_ 1)\'(_ l)jM(j)(0)>0, jl—v<j<jl—v+1a v=0’1’."’z
(where ig=jo=—1, 4y =ji4  =n) .

We continue in the next proposition by locating the zeros relative to the knots
when the monospline at hand exhibits a full set of real zeros. Set

p= S+(M(0)9a(_ l)nM(n)(O))
q= S+(M(1),,M(")(l))

PROPOSITION 2.7. Let M be a monospline of the form

n—1 r
Mx)=x"+ X Ax'+ X cx—&., 0<é <-<é <1,
i=0 i=1

i =
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If n + 2r — p — q distinct points exist satisfying
M(#)=0, i=1,-,n+2r—p—gq

0 < tl < - L tn+2r—p—q < 1

i1 ,
then setting EF=&v1)yap i=1,++,2r, ([ﬁz——] denotes thegreatest integer §Hz_—1)
we have

(2.4) t,<&pey

2.5) EF <ty gy

whenever the indices make sense and n > 1.

PROOF OF (2.4). Suppose to the contrary that &5, , < t, for some v. Then

n—1 r
M(x)=x"+ X 1x'+ T ogx=&)nt
i=0 [(p+v)/2]+1

coincides with M on [£},,,1] for suitable ;. According to Proposition 2.1

ZO0T; (e D) S 1 4+ 2 { - [P_;_]} .y

But, manifestly
Z(M; (& D) = Z(M; [y 1) 20+ 2r—p—q—( = 1)

yielding 2[(p +v)/2] £ p +v — 1, an absurdity. The relations (2.5) are proved
analogously.

ReMARK. In the case n =1 it can be checked that

§i=ty-, i>p).

Furthermore, provided M is continuous, Proposition 2.7 persists even when the
t’s are multiple zeros.

This section is concluded by adding a postulate pertaining to the meshing of
the boundary conditions at points 0 and 1. The stipulations at the end points and

the number of knots cannot be prescribed completely independently and be
concordant with Theorem 0.1.

PosTuLATE 1II

(i) Postulate 1
(ii} If 1> 2r then there exists indices

0Lij< - <iE=n-1,05j,<-<j<n-1
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satisfying
1,k 1,1
TR
S PPN Jis s
and
(2.6) JuS i u=1,01-2r, A=n+2r—k-1

where {i{,---,i,_,} denote the complementary indices of {i,,--,i,} in the set
{0,1,-,n —1}.

The relevance of Postulate IT will be realized in the general analysis of Theorem
0.1. For the moment we highlight its utility. Construct the mapping of Euclidean
n + 2r space into itself as follows

q): E"+2r—?E"+2r,
where for each
+
u =(AO’)'1""’)'n—IS éla cl,""én c,,)eE" 2r

we determine the monospline

n—1 r
Mx)=x"+ 2 Ax' + X ¢(x—=&)v L
i=0 i=1

Given 0 <t < s <ty ypp—; <1 form

n—1
2 4, MY0) 1gigk
Jj=0
(@u)); = S M(t;-1) k<igsn+2r-lI
n—1
Y By MY, n+2r—I<ign+2r
j=0

Let J(u) denote the Jacobian of ® at u. Then, reliance on Laplace’s expansion
and the Cauchy Binet formula (see [6] for details) produces the result

r

k((k—1)/2
J(uw) = (H C;)(— =12 >
i=1 0Siy<hy € <lpZn—1
0Sj1<jr-<jisn—1

2.7)
~ 1,2,k 1,1 FPREIS SAPSY PPRLLN !
<l ek

Lislas eyl J1s i ll”"'9ln—-k’ 61,61,62,62,“’,6,,,6"
where 4, =A,(—1)" and {i},ij,--+,i,,} are the complementary indices of

{iyy=+, i} in {0,1,---,n — 1}. (Pertaining to the notation and meaning of K(: : :)s
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see Section 1,) This caleulation in view of Lemma 1.1, Propositions 2.3 and 2.4
implies that if the boundary conditions 7, N %, fulfill the requirements of
Postulate 1I then

(2.8) ®(u) = 0 entails J(u) 0.

This fact provides a vital ingredient in the ensuing analysis.

3. Bounds on the coefficients of monosplines

In Section 2 we determined the upper bound n + 2r — k — [ on the number
of zeros of a monospline M e 4, (&, N B;). Several properties of monospiines
with a maximum number of zeros were listed in Propositions 2.3-2.7. Our objec-
tive in this section will be to provide a-priori estimates on the coefficients of such
a monospline where &7, N %, obeys Postulate II. It is proved in Karlin and
Schumaker [8] that if

n—1 r
MXx)=x"+ py }-ixi + X gkx- & 1—1
i=0 i=1
has n + 2r zeros in some bounded interval I then 4; and ¢; are uniformly bounded
independent of the location of the zeros in 1. Can this result be extended to the
circumstance of M e ./, (&, N %) exhibiting a maximum number of zeros in
I =(0,1) and where </, N\ %, obey Postulate 11? The next example indicates that

we cannot expect such a result without appending some further constraints.

Example,
r=0n=3k=11=1
M) = x*—(x+6)x +a,a>0
o0 M'(0)=0
F. . (6/5MQ)+ M"(1) =0.
Here, &/, N %, satisfies Postulate II (i; = 2, j; = 0). According to Proposition
2.1, M can have at most one zero in (0,1). Since M(O)M(1) = — S5« <0, M, in
fact, exhibits a zero in (0, 1), but the coefficients of M are not uniformly bounded.
Note that the zero of M in (0,1) tends to the boundary point 1 as ¢ — + .
This is the nub of the difficulty. We will prove that boundedness of the coefficients
is maintained provided the zeros are kept away from the end points of [0,1].

Boundedness of certain coefficients holds with no restrictions on the location of
zeros of M in (0,1). This is the principal content of Propositions 3.1 and 3.2
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PROPOSITION 3.1. Suppose s/, N %, satisfies PostulateI. Let M € M, (=</,N%))

n—1 r
Mx)=x"+ X Ax'+ X c(x—&)!
i=0 i=1

and Z(M; (0,1))=n+2r —k — 1. Then

An—1|§n’lcilén9 i=l,---,r.
Proor. According to Proposition 2.5, we have

ZM@ D [0,1)=2r + 1
and

MO D) =nlx+(n—14,_, + i (n—Dle(x —&)S.
i=1

Consider for simplicity the case where M~V displays only distinct zeros
) <+ <ty,+q (the case of multiple zeros works similarly but requires more
tedious examination of cases). The remark following Proposition 2.7 tells us that

; must be equal to ¢,;. Hence

nlty, +(n—=1D'4,_,=0

gt +(n =D, +(n~-1)! X ¢,=0
=1

n

so that

¢ =Nty 1 —tyiu1ly dyoy = —nty - “

The previous proposition established that the coefficients 4,_,, ¢;,+,¢c, are
bounded independent of the elements comprising the boundary forms as long as
Postulate 1 is satisfied. A parallel result relevant for all the coefficients holds
provided 2r 2 [ (or 2r = k) that is, where there are sufficiently many knots
compared to the number of boundary conditions at 1 (or 0). More specifically:

PROPOSITION 3.2. Let &7, N4, satisfy Postulate I. Suppose 2r 2 1. Then there
exists a constant K such that if

n—1 r
ME)=x"+ X Ix 4+ T gx—&)r?
i=0 i=1
belongs to M, (7, N B, then
|4 S K, i=0,,n—1

|ci[§K, i=1,.-r.
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T he bound K depends on n,r,k,l but not on the elements of the matrices [| A, ”
and || B

wl

Proor. The use of Rolle’s theorem coupled with induction (cf. Lemma 1.3)
shows that

Z(M(j); [0, 1]) g Z(M; (03 1)) _.] + vj’ .l = 0’1’ AP (e 1
v =S (M(0), -+, (— YMP()).
But (see Proposition (2.5))

k < STM(0),-,(— 1)" 1M~ D(0))
< v+ SHMY0),--,(— 1) IMO(0))
= v;+n —j—1

Hence
ZMI[0,1pz(m+2r—k—-D—j+k—-n+j+1)=2r—1+121

Thus

(3.1 ZMY 0,121, j=0,1,-,n—1

Bounds on A,_,, 4,_4,***, 4 are established inductively by using the conclusion
of Proposition 3.1, coupled with the information of (3.1).
A parallel proof works if 2r = k by transforming the variable x to 1 — x. “
When 2r < | we have seen in Example 1 that boundedness does not necessarily
prevail. However the following fact will serve our needs.

ProposiTioN 3.3. Let || A, |, | B, induce boundary conditions fulfilling
Postulate II. Suppose 2r < I. Given & > 0, there exists a constant D (depending
on 8, | A, | By |) such that for

n—1 r
M(x)=x"+ X /lixi + X e =&)Y
iZo 1

i 1=

in M, (A, NB) satisfying M(t,)=0,i=1,--,n+2r —k — I with
<t < <tlypgpp-1<1—0

then it follows that
| <D, i=0,1,-,n—1

le. <D, i=1,2,-r
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Proor. Define

r

Y(x)=x" + X c(x—E&) 1
i=1

n+2r—1

Px)y= X Ix
i=0
with A, specified equal to 0 for i=n. Of course, M(x)=P(x)+ Y(x). If
Me #, (4, N\ B,), then Proposition 3.1 assures the existence of a constant
R such that

(3.2) max [YO(x)] £ R, i=01,,n-2
0sxs1
n—1
(33) 2 AYO [ R pmlek
v=0
n—1
(3.4) 2 B.YOW S R o=l
y=0
Set

n—1
H,= X A, Y0), pu=1--k

v=0

L, = _i: B, Y1), p=1,-1
Abbreviate n + 2r = N. Since M € A, (&, N PB,) we have
n—1
vzjo AP0 = ~H,, pu=1,+k
3.5 P(t)= — Y(1), i=1,N—k-1
%:: B P(1)=~L,, pu=1,L

It is convenient to introduce the quantities

B, = p=1,0,Lv=01,,N—1,

n—
a x=1

1 da xv
B 2 (=
=20 ‘wdx“ ( V! )
Regard (3.5) as a non-homogeneous system of N linear equations in the variabies

2321, +r, Ay~ with determinant given by:
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Alo’ All’ ) Al.n—l, 05"', 0
AkO’ Akl: Tty Akm—la 0’"', 0
o 1 -
t, ti, T -1
A= 5 t N-1
N-k—=1> N-k=D " IN—k-1
BIO’ Eu, Tt BI’N_I
BIO’ Bll’ "t BI,N—I

Let A be the determinant obtained from A by substituting for the vth column
the vector of components

("' Hl’ A Hk’ - Y(tl):'"’ - Y(tN—k—l)a - Ll, T e Ll)-
Cramér’s rule gives the formula

A(V)
.6 1A, = .
(3.6) vid, =—

Set
D(ty, s ty—x-p) = [ (ti—1p.
i<j

For all

0§t1<t2<"'<tN—k—l§1

with due account of (3.2)—(3.5) we deduce the existence of a constant E inde-
pendent of {t;}, such that

l A®)
D(ty, - ty_x-1)

<E- max Y(N_"_'_l)(x)l.
0=5x=1
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Since 2r < I and the boundary conditions fulfill the stipulations of Postulate 11
we are assured of indices

0Siy < <ig<n—1
0<j; < <jign—1

with the properties

1,k

A( );eo

i,y
(3.8) 1,1

()

jl)"a]l
and

jpéijlv_k_l+”, H:l’...’l_
Expanding A (compare with 2.7) we find

By IN—k-1s ji,"'yjl
(3.9) |A gyK( )

]

o of of
s s IN—k=1> IN—k~1+1>"""sIN—k

where y > 0 is a constant independent of ¢, < --- < ty_,_, but depending on the
non-zero values in (3.8). Let
I,"',I, jl,”'sjl
K(1)=K* ( , )
s iN-k
then K(t) > 0,0 <t < 1 by Lemma 1.1. But then it follows as in Chapter 2 of [7]
that

Lis s INeg—1 jl’ ""jl
K

(3.10) ) 2 9D(ty, sty -1

i'l’ ey vk
for some absolute constant ¥ > 0 provided 0 <6 =<t;and ty_,_, <1 -6<1.
Combining the estimates (3.7), (3.9) and (3.10) in (3.6) validates the bounds as
stated in the Proposition.

4. Uniqueness

In this section we establish the uniqueness assertion of Theorem 0.1. Some
reductions needed for the task of the proof of existence in Theorem 0.1 are also
set forth.
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In this section we assume n = 3. The cases n =1 and n =2 will be treated

separately in Section 5.

ProrosiTiON 4.1. Let

n—1 r
MxX)=x"+ X bx' + X ¢(x—=¢&)!
i=0 i=1

n—1 r
Nx)=x"+ X dx'+ X e(x—n)?
i=0 i=1

be two monosplines sharing the set of zeros 0 <t; Sty S Styypp-p-1<1
where no zero exhibits multiplicity exceeding n + 1. Suppose M and N belong
to M, (S, %) where boundary conditions s/, N %, are of the type fulfilling
Postulate 1I. Then

M = N.

Proor. Form
r—1 r

(1) P=M-N="% (bh—d)x + £ a(—&)" ~ 3 ey
i=0 i=1 i

i= i=1

We restrict consideration to the case that the multiplicity of any zero among
{t,3#*2r"k=T occuring at the knots are each < n — 1. The discussion for the case
involving the presence of zeros of multiplicity = » is left to the reader.

Let {;,++, {5, be the sequence {&;} U {;} (where &; is repeated twice if §; = 1,)
arranged in natural order. Then P is a spline of order n with 2r knots satisfying

n—1
T A PY0)=0, i=1,-k

ji=0

(4.2) P(1,) =0, i=1,2,n+2r—k—1

2:1 B,PY(1)=0, i=1,-,1
j=0
This display involves a set of n 4+ 2r linear homogeneous equations in the n + 2r
coefficients of P(x). We will show that the determinant of this system of equations
is nonzero. This fact manifestly implies P =0 the required uniqueness.
Expanding the determinant of the system as in (2.7) involves terms of a common
sign. The non-vanishing of the determinant is equivalent to ascertaining indices

iy <o <y, j; <+ <j; such that
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1,""k \ 1""’1 tl’"'atn+2r—k—bj1,'"sjl
o (T g

. . ) . sl !
gy tems I J1s s i 11,"',’"—1‘,51,”',52,

Recalling the prescriptions of Postulate 1T (Section 2), and consulting Lemma 1.1,
we find that the quantity in (4.3) is non-zero provided

(4'4) tv < Ck+v
(45) cv < tn—k+v

hold (whenever the indices make sense).
Now Proposition 2.7 informs us that

(4.6) ty < &reve1y21
4.7 Strrva1y2] < lnoktv
and

(4.8) by <fge+v+1)2]
4.9 Mek+v+1)21 < bn—k+v

The relations (4.6)—(4.9) assure (4.4) and (4.5). Indeed, from the definition of the{
sequence we know that

min [Epi+ 13721 N+ 1y21] = G i=1,.,r

Thus (4.4) follows from either (4.6) and /or (4.8). A similar argument emanating
from (4.7) and (4.9) established (4.5). |

ReMArk. If the boundary conditions have the form

|
-

n

A= 1YMP(0)=0, i=1,-k

3~
[
= o

A;M91) =0, i=1,-,k

[

J

and the zero set of M is invariant under the transformation x — 1 — x then the
uniqueness guarantees that the monospline satisfying Theorem 0.1 has the
symmetry property

M(x)= — 1"M(1 - x).

This functional relationship facilitates the practical computation of the desired M.
We conclude this section by proving that the existence part of Theorem 0.1.
involving zeros of higher multiplicities is a consequence of knowing the existence
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for the case of simple zeros. Suppose Theorem 0.1 is achieved in the case of simple
zeros. Now let 0 <, £t, £ -+ S t,42,-xk—1 < 1 be prescribed.
For each integer e>1, construct a set of points {s(e)}/22"** by

“spreading apart” the multiple zeros. Specifically, if
tne1 <lm =lpe1 =" =lpyp <lmipsy
define s,(e) =t,, +je/2% j=0,1,---,p where ¢ is determined so that s,(e) are
distinct and in (0,1); viz
0<sye) < <Sppzrp-f(E) < L.
There exists a monospline M, in ., (<7, N %)) such that
n-1

r
M(e)(x) =x"+ X lge)x' + ¥ cge)(x _ £ge))r-1‘_—1
i=0 =1

satisfies
n=1
v=20 Aung;(O)=0’ u= 15"'9k
(4.10) M (5:(e)) = 0, i=1,n+2r—k—1
n—1
Z BMVME’V)(I):'O! ,u=1,"',l
v=0

Propositions 3.1 and 3.2 affirm that the coefficients of M, are uniformly bounded.
We invoke the standard selection process to achieve a monospline

M(x) = lim M, (x).

m-> o0

The equations (4.10) without difficulty pass into the required relations for M(x).

5. Existence for one-sided boundary conditions

It is useful to outline the steps of the analysis. We already know from the dis-
cussion of Section 4 that it is enough to deal only with the case of simple zeros.
The special case of n =1 or 2 is easily handled by explicit construction. When
n = 3 we proceed by a continuity argument with heavy reliance on the implicit
function theorem. Existence is first established in the presence of boundary
conditions imposed only at the endpoint 0 employing an induction on the number
of knots. The full theorem is proved by using the same continuity method coupled
with induction on the form of the boundary conditions at 1,

We examine first the cases n =1 and n = 2. Recalling the rank condition we
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find that the only cases not encompassed by the fundamental theorem without
boundary conditions are the possibilities of n =2, k=1l=1and n=2, k=1,
I=0.
Consider n =2 with k=1, I =0.
AIOM(O) + AIIMI(O) = 0
b <o <tlzrs1.
Proposition 2.7 demands
<& <t,.

Case 1. A;q# 0 entails M(0) = aM’(0) where o = 0. Thus

5 (o0 + x)
<t,.

—_— 2 __
M(x) =x*—1] tt) X =

The determination thereafter is straightforward.
Case2. Ay =0then M’(0) = 0. Thus
ME)=@-t)(x+1)  x=t,.
We construct a Monospline M(x) to vanish at the points — ¢, <t; <t, < -

< t2r+1'
Whenn =2, k=1=1 we proceed as before using the fact that

<& <ty
t2r—2 < 6r < t2r'

We may now stipulate throughout the remainder of the proof that n > 3.
In this section we prove

THEOREM 5.1. Let the k x n matrix || A (— 1) ” be SCy and of rank k. Let
the points 0 <ty <--- <t, x4, be prescribed. Then there exists a unique
monospline

-

1
Mx)=x"+ X Ax'+
i=0

r
ci(x — fi)’-'s-l
i =1

satisfying

n—1
Z AﬂvM(V)(0)=02 n= 13"'sk
v=0

M@)=0 i=1,-,n—k+2r
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Proof. The validation of the theorem in the case r=0 (the formulation
reduces then to a linear problem), requires the inversion of a suitable matrix, The
procedure is straightforward. We continue by induction assuming the validity of
the theorem for the case of r —1 knots (r=1). Let 0<t; <--- <t,_ ., be
given. By the induction hypothesis there exists a monospline M(x) with r — 1
knots satisfying

n—1
X AMY(0)=0, p=12-k
v=0

M) =0, i=1-n—k+2r—-2.

We represent M(x) in the form
n—1 r—1

Mx)=x"+ X hx'+ T ex—E) L
i=0 i=

13

If

Celtyoprarastnoks2r—1)
then
M(t,_yyrr_n)(x =1
M(x; f) — M(x) _ (n k+2r 2)( fz-;
(tn—k+2r—1 - é)
is a monospline vanishing at the points {t,,-*-,%,~34+,,—1}. Moreover, since
M(t,_g42r-2) >0, M(t, 142, &) approaches — oo as & increases to #,_;;,,_1.

It follows that there exist & € [f,—+2r—25ty—k+2,~1) Such that for M(x) = M(x; &)
the following relations hold:

n—1
(5.1 T A;M00)=0, i=1,2,-k

=0
(5.2) HM(1t)=0, i=1n—k+2r—1
(5.3) M(t,_y42,) <O.

We know from Proposition 2.1 that A vanishes at most n — k + 2r times on
(0, 0). In light of (5.3), M actually admits a maximum number of zeros since
M(t)—> + oo when t — co. Therefore there exists a unique 7 > t,_; ,, for which

M(#) = 0.

On the basis of these facts and with the aid of Propositions 2.7 and 2.2, and
Lemma 1.1, we infer that
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Bis s by s ty—kt2r—1
(5.4) K* (‘, , _) >0
11" s bp—is glagla "'agr—lagr—l,f
for all indices 0 £i; < -+ < i, £n — 1 and also the relations
(5.9 c; <0, i=1-,r—1
prevail.

We continue the proofin the form of some lemmas intermittent with discussion.

LemMMA 5.1. There exists an ¢> 0 and a unique family of monosplines
n—-1 r
(5.6) M(x,0)=x"+ Z A)x + X c(0)(x —&@)) 1!
i=0 1

=1

0< ()< <& y(1) < E(v) =7 < | fulfilling conditions (5.1),(5.2), and (5.3)
for each &e(& —¢,&].

PrOOF. The map @ of E" **# 1 into itself (cf. Section 2) defined by

()'Oa "'a'ln—bcl’gl’cbéz’ "':cr—laér—lscnr)

n—1 n—1
- ( o AliM(!)(O)’.”’ 'EO AkJ'M(J)(O)’M(tl)’"'9M(tn-—k+2r-1))
j=

j=

has as its Jacobian evaluated with respect to all its variables except 7:

J((D)/(i];]l c,-)=

Al 00!7"'3‘41,"-1(” - 1){ 0 0 0
Ak,oo !,"',Ak‘n_l(n - 1)! 0 0 0

0 n—1 n-1 6 n—1 n—1
I, ty (L =&t 3 @ =E)% ety — 0y

1 kb 2r—1s "> kb 20— 10 (mkize-1—EDTL s (tymkrzrey — O E
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Expanding J(®) (compare with (2.7)) along the first k rows yields

J(®) = (~ 1o (H c.-) z (I"ll i )

0Siy<-<ipSn—1 ‘j=
A,k | U In—k+2r-1
x A K*
. . o Py
sy Ui lla"'aln—k’él’fl’“.’6"_1’6’_1’T

where || 4,, | = || 4.(= 1)"|. Referring to (5.4) and (5.5) we see that J(®) 0
when 1 = £, Appealing to the implicit function theorem affirms the conclusion
of the lemma. The implicit function theorem further tells us that ,(1), ¢;(v) and
&,(z) are all continuously differentiable functions of the parameter 7.

Let &, be the infimum of all ¢ where Lemma 5.1 is applicable on (&,,&]. We
will establish that

.7 lim M(x,1) = My(x)

léo+

is the monospline which fulfills the requirements of Theorem 5.1. To this end,
suppose first that the limit (5.7) exists and all the knots of M(x) are in (0, 0).
Then

n—1

T AMP0)=0, i=1,-k
ji=0

Mo(ti)=0 i=1,"’,n_k+2r_1
Mo(t,—k+2:) = 0.

M(t,_x+2-) <O then we can invoke Lemma 5.1 to extend the family of
monosplines below &, contradicting the choice of &,. Thus My(t,—;+,,) = 0.

Before tackling the proof of (5.7) we need two further Lemmas.

LemmA 52. Let M(x,t) be the family of monosplines (5.6) satisfying
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.8 2 A,;MY9(0,7) = i=1,-,k
M(t,,t) 0, i=1,-n—k+2r—1
(59) M(tn—k+2r57) <0

for te(&y,&]. Then

d
(5103) 'EM(tn—k+2r91)<0
and
(5.10b) %>0, i=1,2,-,r—1

Proor. Differentiating the relations (5.8) in 7 (with é(7) = 1) gives

_1 d .
= E —d— (J)(O’T), i=1’21“'7k

0———M(t,,1) = Z (#')l'(r)~—+ 2 @ -&)!

(5.11)
+ Z v()d(:” aaé(ti EYit,  i=12n+2r—k-1
, d dé, @ -
(512) M(t T) = E ()4, (r)—+ -+ 2 (t)d 7 (ti =
#=0 ¢

with ¢ a fixed value >1,,,,.,—;. Regard the first n + 2r — 1 equations as a
homogeneous system in the n + 2r variables

)'6(1:)9 '”»)‘::—1(1:)’

CI(T)’CI(T) d ’ ,C,. 1(1)5 Cr— 1(7") ,(T), r(t)
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The rank of this matrix is (n + 2r — 1), (cf the analysis of (2.7)). Apart from a
multiplicative constant the solution in (5.4) is proportional to the minors of the
matrix obtained by eliminating successive columns and attributing to them the
proper sign. More exactly, we obtain via the usual expansion (see 2.7)

r—2v dév
(- 1)>r=2 ¢,(v) ar
(5.13) C,(T)
~ 19"'9k tyees s Lant2r-k-1
i<,§<(nnm% K(l 20+ )
LR - il’”',ik ills'”:in,—ksélyéla'"aév—l;évaév-}-1s£v+19”'5£n£r
- 13"'ak Ly, Lot 2r—k-
w2 DA k(! )
HEREmEh il?"'aik i,1>".’i;—k,élsél’.“’ér—l’ér—liér

As ¢, (7)c,(1) > 0 (both are negative) we deduce on the basis of (5.13) that

dé,
dt

>0, yv=1,2,--,r

and (5.10b) is proved.
Next append equation (5.12) to (5.11) and regard the known side as the vector
(0,0,---,0,(d /dt) M(t,7)). Solving for the variable ¢, (z)d¢, /dt = c,(t) gives

¢

(— =iz Yy 7 (1,“"k )K(tn"'a Ln—k+2r-1 )
_ dM(t,7) ) UL A ill,"',i;—kaéuél,‘“’ér—l’fr-la'c
- (= DE-L2 Y F (1,---,k )K(tl’m, frowar ! )
il"”’ik i’19"'9i:l—k951’él""’ér’ér

We know from Proposition 2.4 that necessarily ¢,(7) < 0. Therefore dM(t,7)/dt
< 0 as claimed in (5.10a). In view of the fact that (5.3) holds for M(t,7) there
exists a unique #(t) > t,_,,, such that M(¢(z),7) = 0.

COROLLARY 5.2. Let M(x;1) be as defined in Lemma 5.2. As t decreases
&,(0),&,(7), -+, &, 1 (7) strictly decrease and the zero t(z) strictly decreases.
The final assertion is a direct consequence of (5.10a).

We return now to the proof of (5.7). We claim that it is enough to prove that
there exists a constant C > 0 such that

W@ =c,  i=0,1,-n—1
Cl-(‘t') éC: i=1,---,r Te(iOaE]‘

(5.15)
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For in this case there exists 7, — £, such that

n—1 r
lim M(x,7,) =x"+ X Ax'+ T c(x—&)i!
n— 0 i=0 i=

1

where
0<sé <--g¢

lim ci(t,) = ¢;

PRl
lim A,(z,) = 4
g oo
lim {(z,) = Ei
g oo

It follows that
My(t) =0, i=1,-,n—k+2r-1
and

lim MP(0,¢,)=MP©O), i=01,-,n—2.

o

We wish to show that all the knots of M, are distinct and are located interior to
(0, 00). Consider two cases. First, if 4,,_;, =0, i=0,1,---,n — 1 then M, also
satisfies

n—-1
X 4MP0)=0, =1,k
i=0
1t follows from Corollary 2.1 that M has at least r knots in (0, c0). Thus
0<§& < <é,.

Secondly, if 4,,,-, #0 then M, satisfies

_21 [AU - Z—@—Aim_l]Mﬁ,"’(O)=0, P= 1,0,k
j=0 an—1 ey
Since the matrix || 4;; — A,;4; ,—1 [Aun-1 || is SCi—y and of rank k — 1 we again
infer that M, has at least r knots in (0, o).
It remains to prove that the coefficients of M(x,7) are uniformly bounded.
Since M(2,_ 4+ 2.,7) < O there exists a t(t) > t,_, +,, noted earlier, satisfying

M(t(z),7) =0.
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According to Proposition 3.2 the coefficients of M(x, 1) are uniformly bounded on
(&9, &] provided that #(z) is uniformly bounded on (&,,&]. But this is the case as
assured by Corollary 5.2,

6. Fundamental theorem for two-sided boundary conditions

This section is devoted to completing the proof of Theorem 0.1 in the case of
general boundary conditions at both end points. The method of analysis proceeds
by induction on the form of the boundary conditions at the point 1. We treat
first the case of 1 boundary condition.

Given 0<t; <+ <t,_pya—1 <1 it is desired to show the existence of a
monospline satisfying

n—1
X A4,MY0)=0, p=1,-k
v=0

M(t)=0, i=1,,n—k+2r—1
n—1
Y pMP) =0, pu=1,-,1
i=0

13

where the b,’s are of a single sign and at least one is nonzero. Without loss of
generality, we may assume

b,z 0, i=0,1,-,n—1.

Choose a point in (¢,_;.2,—1,1) and label it ¢,_; ., ,,. During the course of the
analysis of Section 5 we contructed a family of monosplines

n—1 r
Mx,0)=x"+ X L@x'+ T c(@)(x &) !
i=1 i=1
where 0 < &,(1) < -+ < £(1) =1, {4(7)}, {¢;(v)} are continuous and
n—1
(6.1) X A4 MY0,1)=0, n=1,-k
v=0

6.2) M(t,7) =0, i=1,-n—k+2r—-1

for tin [y, ty—g4+2,~1)- The point &; is uniquely determined by the additional
requirement that

(6.3) M(tn—k+2nfo) = 0.

MDOA,E)>0, i=0,1,n—1.



Vol. 11, 1972 MONOSPLINES WITH BOUNDARY CONDITIONS 437

Moreover, recall that
lim MY(1,7)= - .

rothex+2r-1
Hence X'Zab,M¥(1,7) changes sign on [&,f,_4s2,—1). Thus there exists
To, &0 < To < ta_kszr—1 satisfying Z'Zob;M¥P(1,1,) = 0. The desired monospline
is manifestly M(x,7,). Theorem 0.1 is established in the case I = 1. We discuss
next the case of | boundary conditions, I > 1. Consider first the special situation
where the boundary conditions at 1 have an associated coefficient matrix of the

form
Blo B1,1—1 0 - 01

By -+ By 0 0J

The accompanying rank stipulation implies that the corresponding boundary
conditions are equivalent to the conditions that M displays a zero of order [ at 1.
The desired result in this circumstance is an immediate consequence of Theorem
5.1. Now assume inductively that Theorem 0.1 is proved for [ boundary condi-
tions fulfilling Postulate 11 but where also B,, =0 vzm,u=1,---,land/ Sm <
n—1. We extend the validity of Theorem 0.1 to the case of boundary conditions
obeying Postulate II subject to the reduced restriction of

B,,=0,vzm+1.
The matrix of the coeflicients of the boundary forms is displayed as
(Bm o By i1 0. 07
l

B | |

|

LB!O Bl,m+1 U O-J

Assume first that the matrix
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is SSC,; i.e., every | x | subdeterminant is strictly of one sign. This restriction
will be removed later. For convenience we take the sign as + 1.
Manifestly, we can rewrite the boundary conditions in terms of the equivalent

matrix
-
rBio . B, 0 e 0
(6.5) B =
Bll—l,O"' B;—l,m 0
LBI'O B;m Bl:n,+1 0. OJ
where B, ,,,; > 0 and
1,1 1,1
(6.6) (0 ) =GB ()
jb'"a]l V1)

for all 0 <j; <--- <j,£n—1. Therefore without loss of generality we may

assume B has this form. Now observe that the matrices ]| (- 1)4,, | and

By - By 00

By - By, 0---0

fulfill the requirements of Postulate II. Indeed if 2r <[ there exists indices
Osii<<i=n—-1,05j, < <jjEn-1

1,k 1,1
(6.7) A( );éo, B( )#0
i

il’”"ik jl’"',j
with j, S ips20—k-14+p # =1,++-,1 = 2r. But certainly
(6.8) feSj, forjl=p—1

and

A, el 1, o1
Blg o) =Bl . ) 0
.](1)’ ’J? ]?’ ’J?
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since B is SSC,.
Therefore by the induction hypothesis we are assured of the existence of a

monospline

1

M(x)=x" + E

Mt Xoe(x—8)Y!
0 i=1

satisfying

0<g, < <§ <1

n—1

T A4MP0)=0, p= 1,2,k

v=0

M(t)=0, i =1, n+2r—-k-—1

B,MY(1) =0, 7

1
s
i
—_
-

v

Note that M(x) satisfies all the constraints necessary to advance the induction

to the matrix B except for the last boundary condition at 1 which specifically
requires that the quantity

n—1 m
x Btv>M(v)(1) =2 Blv>M(V)(1) + Bt.m+1M(m+l)(1) = Blnm+1M(m+1)(1)
=0

v=0 v
should vanish.
The monospline M(x) will serve as a starting point for the continuity method
used to construct the desired monospline. It is convenient to divide the subsequent

analysis into a series of lemmas.

LEMMA 6.1. There exists an ¢ > 0 and a family of monosplines

n—1 r
M(x,0)=x"+ X L@Ox'+ X c1)(x — &)L ?
i=0 i=1
determined for each t in [&,,§, + €) with the properties

0<¢é(<-<t(n=1<1

(6.9) (i) M(x,5)=M(x)
(6.10) (ii) 3:1 AMO0,0)=0, p= 1,k

(6.11) (i) M(t;,7) =0, i=1-n+2r—k—1
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n—1
(6.12) (iv) X B MY1,7)=0, u=1,-1-1
v=0
n—1
(6.13) W Z B,M®(1,7) >0,
v=0
(6‘14) (Vl) S+ (M(lir)i Ml(lat), "',M(n)(lft)) =1

PrOOF. Consider the map W: E" %" — Ert2r—1

Y (ﬂOa a n lsclaéls 5 Cry r)

n—1
- | L 4,M(0), M(t,), Z B,,M®(1)
v=0 v=0
[\ _J ;_V__J L___\ .___._JJ
k n+2r—k—1 -1

Then

\F(}’O, ) n 17claén "y Crs gr) =0.
The Jacobian of ¥ with respect to all the variables except &, (cf. formula 2.7D)is

r 19'“9k 1,,1—1
JE(—1)“’°'“/2(H c,.) z /T( )B( )
i=1 0Zig<-<ig<n—1 . .

0ji<<ji—1=m 1" ]1,"',j1—1
[SURREE FYA FURLLIY Y
x K
. .
Ly s lp—p> 61961""95r~1,€r—1’§r
(N=n+2r—k

A~uv ” = ” A= l)v”)'
Since B is SSC; by assumption we invoke Proposition 2.7, Corollary 2.2 and
(6.8) to conclude that J#0 at (hg, -, h,_1,¢1,E1,,¢,E,). Now an appeal
to the implicit function theorem establishes (6.9)-(6.12).

We next examine the expression

'S BMO) - 2 B MO(1) + By s M),
v=0

Since By, = 0 for v>m + 1 we refer to Lemma 2.1 to infer that M™* (1) > 0
and the validity of (6.13) is deduced by direct continuity considerations. Our final
task is to prove (6.14). From Proposition 2.1 we know that

S+(M(1,T), "',M(")(I,T)) é l'
On the other hand, Lemma 2.1 informs us that

I-1587(M(1,0),--,M™(1,7)).
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To complete the analysis it suffices to verify that (— 1)'M(1) > 0. To this end, note
that (— 1)'M(1) = 0 because S*(M(1),---,M™(1))=1 and M™(1) > 0 prevail.
Moreover, M(1) cannot vanish for otherwise M satisfies [ + 1 boundary conditions
at the point 1 with associated coefficient matrix

BIO e Blm 0 can 0
szo v+ By By - 02

which is clearly SC;,, of rank I + 1. This information is incompatible with the
conclusion of Proposition 2.2 and the fact that Z(M) = n + 2r — k — I, The proof
of Lemma 6.1 is complete.

Define a, as the supremum taken over all « < 1 where M(x,t) possesses the
properties listed in Lemma 6.1 for all 7 in [£,,a). We will show that the limit as
7 — oty of M(x,7) exists and this limit function determines the desired monospline
fulfilling the requirements of Theorem 0.1.

The next lemma formalizes the outcome of this limit process,

LeEMMA 6.2. We have oy < 1 (¢, is defined immediately above) and

n—1 r
lim M(x’T) =M@x)=x"+ ) Aixi + X Ci(x - fi):-_l
i=0 i=1

T-rap

O<é << =ay<1.

Moreover, M(x) satisfies

{
—_
S
z
==

v=

n-1

T A MP0)=0, u
o]

M()=0, i =1,n+2r—k~1I

n-1
2 B MO)=0, pu=1,-,1
v=0
Proor. Our first need is to establish that the coefficients of the family of
monosplines

n~-1 r

M@x,7)=x" + g A(Dx" + _E e(Mx - &N

i=1
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are uniformly bounded for 7 in [§,,a,). This assertion ensues on the basis of
Proposition 3.2 in the case 2r = I. When 2r < | boundedness is proved employing
an argument paralleling that of Proposition 3.3. In fact, we know from Proposition
3.1 that {c/(1)};~, are bounded on [§,,a,). We now show that {4,(z))'_g are also
bounded. Set

Y(x,7) = x" + é e(D(x — Y]
i=1
n+2r—2
P(x,0) = X A@x, (A =0,i=n).

Then
M(x,7) = Y(x,7) + P(x,7)

and there exists a constant C such that

lii

n—1
| H(9)| 20 A, YO0,0) [SC, po= 1,k
v

il

| L@

s—1
¥ B, YY0,0) [=C, u=1,-1
v=0

max ] Y(x,r)] <C

0sxs1

for te[&,,a0)-
In view of (6.10)—(6.12) we have

n—1 )
Y A PY0,0)=~-H), p=1,-k
v=0
P(t,ny=—-Y(t,7), i = 1,-,n+2r—k—1
n—1
B, PO(l,0)= —L(x), p=1,,0—-1
v=0

These are n+2r—1 linear equations in the n+2r—1 “unknowns’ {,(z)}/=¢ "2

with the inhomogeneous right hand side consisting of quantities uniformly
bounded in 7. Thus, we need only check that the determinant A of the system
(which is independent of 7) is nonzero. Expanding this determinant A (cf. (2.7) of
Section 2) gives

[A[ > ‘)}K (tl""atn+2r-k—2 j?;""j?—l

ot !
lys e, it2r—k—1
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where 0<i; < <iySn—1and jl=p—1(u=1--1) and y>0. But as
previously pointed out (see 6.7)) we have

j“"<" p=1-1-2r

= ln+2r—k—l+;u

and so A # 0 by virtue of Proposition 2.7 and Lemma 1.1.
The boundedness of the coefficients is proved. Since the coeflicients are bounded
there exists a sequence 7, — o, such that the limit relations

AT = A, i =0,1.-,n-1

¢t = o, i = 1,7

&) -8 8= 1er
persist.

Set
n—1 . r
M®=x"+ I ¥+ I -y
i=0 1

i=

0s¢ 88,528 =0=1.

IA

Then clearly for all x

(6.15) lim M9(x,7,) = MU(x), i=0,1,--,n-2.

H~> 0

We will next perform a computation to show that the knots increase as 1
increases. Direct differentiation yields

n—1 r
I M = 2@+ T d@e- et
T i=0 i=1

(6.16)

< 7 i_ _ £ n—1
+ i=21 C,-(T)gi('l,') aé; (t 61 +

and we also obtain

-1
' a (v) = —— con
v=20 A‘w—a?M (0,1’)—0, U = 1, ,k
a .
(6.17) 'aTM(tnT)=0, i =1,n+2r—k-1

-1
'S 5 MOy =62 = Ol ] —
I B ML) =80 M1,7), g =01,.1-1
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where
r1 0 0 - 00
Bio Bpw 00
B=
‘Bl—i.O Bl—l,m 0 OJ

Regard the equations (6.17) as a system of n + 2r linear equations in the n + 2r

“unknowns”’ 25(1),++ A,—1(0), ¢1(1), €, (T)E1(7), -+ €7 1(1), €, - 1 (17— 1(T), € (T)E ()
(recall that £,(t) = 7). Solving gives

- ; 0 A.
’ — (__q\pt2r—k-ltk+nt2i+1 i
(D)@ = (=1 Sz ML, F
0 A;
= (= 1) — i | =
= (-7 MG i= L2

k 1,--.k 1,-,1—1
A = (—1fD2 3 ( i-!)~ s "
p =D 0Siy<<igSn—1 11;11 )4 B

05j1<-<jr=1=m bioors

Biss Ins J1s 51—t
©618)  xK ( ) )
11)“',ln—k5€19617"'>fi—pgi-—l,6ia€i+19§z+1"')§r

A = (= e ) (]‘k[ i,.!)z (1" )B(?"””‘l)

O0Sij<--<ixg<n—1 ‘j=1 Iyl J1s s J1-1
05j1<-<ji-1Zm

tla"'stNaOsjla"',jl—l
X K( , )
ill"“Jn—k 61 éla"' graér
With the help of Proposition 2.4 and Lemma 1.1 we find that (= [)}*"Y/2g A 50
(when 2r < I use theindicesj, = u,p = 1,--,I1—1) and (¢ D2g g A, > ¢ by
virtue of Lemma 1.1 where ¢, = + 1 is the sign of the kth order minor of 4.

Also we know according to Proposition 2.3, that ¢;(t) <0, i = 1,---,r. These
facts plus that &(z) for i = r in (6.18) lead to the inequality

(6.19) (=1 - MUD20,  tela)

and then in (6.18) with i =1,2,---,7 — 1 the result
(620) é:(r) 20, i=1,.r, T€ (‘gn“o)-
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The relations (6.20) imply, in particular, that 0 <&, < ¢*and consequently

n—1

Y A4,MP0)=0, p=1,-k
i=0

Owing to (6.15) and because of the stipulation B,,,_; =0, pu=1,---,1 -1 we
deduce that M (x) further satisfies the equations

n—1
Y B MP1)y=0, p=1,-,1-1
(6.21) v=0
M (1) =0, p=Ln+2r—k—1

Now let r’ denote the number of distinct knots of M inside (0,1). Proposition 2.1
and Lemma 1.2 affirm that
n+2r—k—=1sn+2r-k-1I+1
or
2r 2 2r' + 1.
Therefore r' = r and so
0<é <<t =a5<1.

It remains to demonstrate that
n—1
Lo B,MC)Y1)=0.
v=

Suppose to the contrary that X025 B,MQ (1)>0. If we can show that

S*T(M(1),--,M%(1))=1 we then appeal to the implicit function theorem as in
Lemma 6.1 to extend &, = a, to the right. This provides a contradiction to the
the definition of «,. However, Proposition 2.1 and Lemma 2.1 in conjunction with
(6.20)—~(6.22) imply

(6.22) -1 28T (M), MPON L
But (6.19) implies
(= D'M(1,7) 2 (- HYM(D).
It follows that
(= D'M (1) = (— 'M(D).
Recalling that (— 1)'M(1) > 0, a fact noted during the proof of Lemma 6.1, we

obtain the identical inequality for M(1). Since M%)(1) > 0, it follows from (6.22)
that
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STM (D), M) = 1.
The proof of Lemma 6.2 is complete.
The conclusion of Lemma 6.2 is synonomous with that of Theorem 0.1 except

that we need to relax the SSC; hypothesis on the boundary conditions. Suppose that
| b=t is merely SC,. By a standard approximation procedure there
0, -~,m+ 1

exists for each ¢ >0, B(o) = ” B,,(9) “,, 1 . which is SSC; and such that
01, e m1

lim__, ,B(o) = B (see [7, p. 22]). The indicés of Postulate IT for | B,,| certainly
apply for B(o). Hence there exists

n—1 r
M(xX)=x"+ X Ao)x' + T c¢(0)(x = E(o))i !
i=0 i=1

fulfilling the conditions

n—1

> AuthE'V)(O):O’ u = Lk
v=0
M(t)=0, i =1+n+2r—k-1
n—1
Z B,MI(1)=0, p= 1,1
v=0

If the coefficients of M, are uniformly bounded then we can argue as in Lemma 6.2
and clearly lim,_  M(x) furnishes the desired monospline.

In the case that 2r 2 I boundedness of {4,(s)}, {¢,(0)} follows along the lines of
Proposition 3.2. When 2r < we reason as in Proposition 3.3 or Lemma 6.2,
Indeed, let P ()= XLrF2™1 a(o)t, A(6)=0, i=n. Then P, satisfies an in-
homogeneous system of linear equations. The inhomogeneous terms are uniformly
bounded in o, and if A, denotes the determinant of the system then

1,...,k 1’_,_’1
A, = (-2 X [Hl'} Z[ ]B{ 1

0Z5j1<<j1sm—1 . . .
0<ij<w<ixSn—1 Lyl ]1,"-,],J

tla tN]l, J
XK(/ of ) (N=n+2r_k_l).

s s lnt2r—k
which is bounded away from zero. The remainder of the argument proceeds

mutatis mutandis.

7. Applications and extensions

As an application of Theorem 0.1 we establish the existence of certain types of



Vol. 11, 1972 MONOSPLINES WITH BOUNDARY CONDITIONS 447

quadrature formulas exhibiting “‘double precision’’. These formulas can be
interpreted as constituting extensions of the classical quadrature formulas of
Gauss, Rado and Lobbato. The connection between ‘double precision” quadra-
ture formulas was first indicated by Schoenberg [16], (see also [9]).

Let n,k,I,r be natural numbers satisfying n < k + 1 + 2r, and special indices

0si,<<igsn~-1
0gjy<-<ji2n-—-1

obeying the relations

(7.1) JuSise v=1,n—1-2r

when n > 1+ 2r and s = k + | + 2r — n. Consider arbitrary but fixed points

O<xy <<, <L

THEOREM 7.1. There exists a unique quadrature formula

09 [swdr~ T AP0+ T BOW+ T MG

with 0<¢ < - <&, <15 1., A, B,, 4 and ¢; exist such that equality prevails
in (7.2) for the family of functions {1,--,x"~%, (x — x)% ', -+, (x — x.)% '}.

Moreover, the weights {1;}{-, are all positive and the signs of {A,}, {B,} are
computed by the formula S* () =n — k, S*(B) = n — | where

~

0, ifi=n—1-1, p=1,-n—k
o = (=D, ifi=n—1—i, p=1,-k
L1, U7:=n
a3
0, ifi=n—1-j, p=1,-,n-1
fi = 1(—1)""3,‘, fi=n—1-j, p=11
1, ifi=n.

Proor. Consider a monospline

xn

M(x) = i

n—1 r
+ X bx'+ X c(x—&)7 N
i=0 i=1

Let f be of continuity class C", then integration by parts produces the identity
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1 n—1 n—1
f f(x)dx = Z (_ l)jM("—lﬁ)(l)f(j)(l) _ Z (_ l)jM(n—j—l)(O)f(j)(O)
4] j=0 ji=0
(7.4)

r 1
- T (- DUE (-1 [ Mey®

Now determine M(x) as the monospline of degree n involving r knots in (0,1)
and satisfying the conditions

(7.5) MO0y =0, u =1, n—k
(7.6) M(x)=0, i =15
(7.7 MP~1=iW1)y=0, p=1,,n—1

The existence of such a monospline is assured by virtue of Theorem 0.1 and the
stipulations of (7.1) and the fact of n + 2r — (n — k) — (n — I) = s. We write

xn

M) = n!

n—1 r
+ X Aaxi+ X oe(x-8) L
i=0 i=1

Substituting in (7.4) yields apart from the integral on the right the quadrature
approximation

f 1f(x)dx ~ g‘, (— 1)BF = 1=i0)f G 0)
Y =1

I3

(7.8) - zl; (— 1R 1=30(1)£9:(1)

- (-0 T af@)= o).

This quadrature formula is manifestly exact for the functions {l,x,---,x"‘l}
by the nature of the remainder term in (7.4). Making the obvious identifications

of {1,}, {4,} and {B,} we see that the relations of (7.3) are valid according to
Proposition 2.6.

To show that the quadrature formula (7.8) becomes equality for the function
(x — x;)7 " is equivalent to showing equality for the function (x; — x)"." ! since
=) (=D =X =) T

With the help of (7.6) we obtain
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1
f (x; — )\ tdx
0

— (xi _i)n‘ X:

I

X
(x; —x)" ldx =
¢} ]

X

n

I ™M=

Rl I S
j=1

z=1

k (1) d* n-
= (n—1)! [— z x,,_l_,u(—l)’"g%—iT);‘Q—dxiu(xi—x) '

x=0

- T ou-g) ]

i=1

= 0(C =)V ).

Theorem 7.1is also provenin [10] when s = 0. In[10] the nodes of the quadrature
formulae are identified as the zeros of a certain extremal polynomial.

The results of this paper extend to the case of Extended Complete Tchebycheff
systems. We merely state the result without entering into details.

IfO<w; Swy(x)=w, < oo for xe(— 00, + ) we define

Uo(x) = wo(x)

Vi) = wol) f i€ ey

x &y En-1
U(x) = wol) f Wi(Zy) f WaEs) f W&, dE, - dE,
and
d [0 _
qu) = —E [m], 0,1, R

A Tchebycheffian monospline with respect to {U,};-, has the form
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n—1 r
(7.9) Ux) + X AU+ T ¢,®,-1(x,8)
=0 i=1
where
¥ 3] Sn-1
e = 4" fg wi() ﬁ Wa(Es) L e ENdE s S %

0 ¢ > x

If | A,,| and | B,, | satisfy Postulate IT and (7.9) satisfies boundary conditions of
the form

n—1
T A4,D'M)(0)=0, p =1,k
v=0

[y
-
-

—

n—1
X B, (D’M)1)=0,
v=0

where
D'=D,D,_;---DD,, D, = Identity operator

then Theorem 0.1 persists,

An important particular case is the system {1,--,x"~1, f(x)} where f®(x) > 0.
Hence the fundamental theorem applies if x” is replaced by any function whose
nth derivative never vanishes on [0,1].
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